Electronic Supplementary Information

Optimal d-band-Induced Cu₃N as Cocatalyst on Metal Sulfide for Boosting Photocatalytic Hydrogen Evolution

Qing Guo,^{a,b} Fei Liang,^c Zongzhao Sun,^a Yang Wang,^d Xubing Li,^d Shuguang Xia,^d Z. Conrad Zhang,^b Limin Huang^{*,a} and Li-Zhu Wu^d

^aDepartment of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China

^bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^cState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

^dKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

*To whom correspondence should be addressed.

E-mail: huanglm@sustech.edu.cn.

Table of Contents

- 1. Synthesis of Cu₃N NCs
- 2. Synthesis of Cu₂O
- 3. Synthesis of Cu₂S
- 4. Synthesis of Cu₃P
- 5. Synthesis of CdS/Cu₃N
- 6. Photocatalytic hydrogen production
- 7. The measurement of apparent quantum yield (AQY)
- 8. Long-time photocatalytic H₂ evolution
- 9. Photoelectrochemical measurements
- **10. DFT calculations**
- 11. The calculated band structure of Cu₃N
- 12. The calculated pDOS of Cu₃N
- 13. Crystal structure of obtained Cu₃N
- 14. Full XPS spectrum of Cu₃N
- 15. TEM images of CdS and CdS/Cu₃N
- 16. XRD patterns of various CdS/xCu₃N with different mass ratios
- 17. The corresponding lattice distances of of CdS/Cu₃N
- 18. EDX spectrum of CdS/Cu₃N
- 19. XPS spectra of CdS/Cu₃N
- 20. High-resolution XPS spectra of Cu 2p for CdS/Cu₃N
- 21. Mass ratios of Cu₃N to CdS determined by ICP-AES
- 22. UV-vis spectra of various CdS/xCu₃N with different mass ratios
- 23. Comparison of photocatalytic activity with reported CdS-based system
- 24. Wavelength-dependent activity of CdS/Cu₃N for H₂ production
- 25. Stability of CdS/Cu₃N for H₂ production
- 26. XRD pattern of recycled CdS/Cu₃N
- 27. Elemental mapping of recycled CdS/Cu₃N
- 28. XRD patterns of Cu_2O , Cu_2S and Cu_3P
- 29. Comparison activity of Cu₃N with other Cu(I)-based cocatalyst

- 30. UV-vis diffuse reflectance spectra and corresponding Tauc Plots of CdS/Cu $_3N$
- 31. Mott-Schottky plots of CdS/Cu₃N
- 32. Band structure diagram of CdS/Cu₃N
- 33. Fitted parameter of PL lifetime in Figure 4b
- 34. References

1. Synthesis of Cu₃N NCs: Cubic phase Cu₃N nanocrystals were synthesized by reported methods.¹ Briefly, 60 mg Cu(NO₃)₂·2.5H₂O was dissolved in 5 mL oleylamine and 5 mL 1-octadecene. The solution was degassed under vacuum for 30 min. Then the flask was filled with highly pure argon (Ar) and heated at 150 °C for 3 h by heating mantle under magnetic stirring, in which the color of the solution changed from blue to green, and finally to yellow. After that, the solution was heated to 250 °C and kept at this temperature for 30 min. Subsequently, the heating mantle was removed and the flask was cooled down. The product was collected by centrifugation (12000 rpm, 10 min), washed with ethanol several times and finally dried at 60 °C under vacuum.

2. Synthesis of Cu_2O : Cu_2O was synthesized according to previous methods.² A mixture of $Cu(NO_3)_2 \cdot 2.5H_2O$ (1.0 g) and octadecylamine (ODA, 8.6 g) was placed in a flask and degassed under vacuum for 30 min. Then the flask was filled with Ar and heated at 240 °C for 10 min by heating mantle under magnetic stirring. Subsequently, heating mantle was removed and the flask was cooled down. The product was washed with ethanol several times and finally dried at 60 °C under vacuum.

3. Synthesis of Cu₂S: Cu₂S was prepared by reported methods.³ Firstly, Cu(NO₃)₂·2.5H₂O (232 mg) was dissolved in deionized water (20 mL) to form a clear blue solution. Then, CH₃COONa (82 mg) and CH₃COOH (600 μ L) were added into the above blue solution. After stirring for 15 min, it was transferred into a Teflon-lined autoclave and dodecanethiol (3 mL) was introduced. The solution was heated at 200 °C for 6 h. After cooling to room temperature, the product was collected by centrifugation (6000 rpm, 5 min) and washed with ethanol for several times. Finally, the product was dried at 60 °C for further use.

4. Synthesis of Cu_3P : Cu_3P was prepared according to literature methods.⁴ In briefly, 1.16 g $Cu(NO_3)_2 \cdot 2.5H_2O$ was dissolved in 100 mL deionized water to form a clear solution. NaOH aqueous solution (0.25 mol/L, 20 mL) was introduced under magnetic stirring. After stirring for 2 h, precipitates of $Cu(OH)_2$ were collected by centrifugation and dried under vacuum. Then, the obtained $Cu(OH)_2$ (250 mg) was mixed with NaH₂PO₂ (2.5 g) and calcined at 300 °C for 1 h with a heating rate of 2.0 °C min⁻¹ under Ar atmosphere. After that, the samples were collected and washed with water and ethanol for further applications.

5. Synthesis of CdS/Cu₃N: firstly, Cd(CH₃COO)₂ (368 mg) and thiourea (420 mg) were dissolved in deionized water (30 mL) to form a clear solution.⁵ Then, 3.0 mg Cu₃N was dispersed into the solution through ultrasonication. After that, the solution was transferred into a Teflon-lined autoclave and kept at 180 °C for 12 h. The product was collected by centrifugation (8000 rpm, 5 min) and washed with water and ethanol several times. Finally, the product was dried at 60 °C for further characterizations and uses. The dosages of added Cu₃N were 0, 1.0, 2.0, 3.0, 5.0 and 9.0 mg, and the resulting mass ratios of Cu₃N to CdS were 0, 0.8, 1.3, 2.0, 3.1 and 3.9 wt%, respectively.

For the synthesis of CdS/Cu₂O, CdS/Cu₂S and CdS/Cu₃P, 3.0 mg Cu₂O, Cu₂S and Cu₃P were introduced respectively, instead of Cu₃N, and other procedures were similar to above.

6. Photocatalytic hydrogen production: the solar H₂ generation reaction was conducted in a closed glass reaction system (CEL-SPH2N, CEAULIGHT, Beijing). First of all, 10.0 mg photocatalyst CdS/Cu₃N was dispersed in 40.0 mL ascorbic acid (AA) aqueous solution (0.1 mol/L, pH = 5.0). Then, the air in reactor was evacuated using a vacuum pump for 15 min. After that, the reactor was irradiated by a 300 W Xe lamp with a cut-off filter of 400 nm. The generated molecular H₂ in the reactor system was measured using an online gas chromatograph system (*Shimadzu* GC2014CAFC/APC) equipped with a thermal conductivity detector and a 5 Å molecular sieves GC column. Ar was used as a carrier gas. Error bars on H₂ were calculated from at least three independent experiments. For the wavelength-dependent activities were measured using a bandpass filter of 420 nm, 450 nm, 500 nm, and 600 nm, respectively, instead of cut-off filter of 400 nm and other procedures were similar to above.

7. The measurement of apparent quantum yield (AQY): Briefly, 2.5 mL ascorbic acid (AA) aqueous solution (1.0 mol/L, pH = 5.0) containing 0.5 mg photocatalyst CdS/Cu₃N was placed in a sealed quartz cuvette with 1-cm path length. Then, the system was irradiated under 450 nm LEDs (100 mW \cdot cm⁻²) with a fixed irradiation area of 1.57 cm². The evolved H₂ gas during 2.0 h was analyzed by GC. As a result, the number of absorbed photons could be calculated as the following equation:

$$N_{photon} = \frac{t(s) \times P(W \cdot cm^{-2}) \times S(cm^{2}) \times \lambda(m)}{h(J \cdot s) \times c(m \cdot s^{-1})}$$

$$=\frac{2\times3600(s)\times100\times10^{-3}(W\cdot cm^{-2})\times1.57(cm^{2})\times450\times10^{-9}(m)}{6.626\times10^{-34}(J\cdot s)\times3\times10^{8}(m\cdot s^{-1})}$$

$$= 2.56 \times 10^{21}$$

So, the apparent quantum yield (AQY) of photocatalytic H_2 evolution was calculated as the following equation:

$$AQY = \frac{2n(H_2) \times 6.02 \times 10^{23}}{N_{photon}} \times 100\%$$

For the CdS/Cu₃N system, about 82.78 μ mol of H₂ was produced in 2.0 h. Herein, the AQY can be calculated as follows:

$$AQY = \frac{2 \times 82.78 \times 10^{-6} (\text{mol}) \times 6.02 \times 10^{23} / \text{mol}}{2.56 \times 10^{21}} \times 100\%$$

= 3.9%

8. Long-time photocatalytic H₂ evolution: firstly, 100.0 mg CdS/Cu₃N was dispersed in 50.0 mL AA aqueous solution (1.0 mol/L, pH = 5.0). The air in reactor was then evacuated using a vacuum pump for 15 min. The photocatalytic experiment was carried out under the irradiation of Xe lamp with a cut-off filter of 400 nm (300 W). The produced H₂ was detected every 0.5 h by an online gas chromatograph (*Shimadzu* GC2014CAFC/APC). After the irradiation for 1.5 h, additional 5.0 mL AA (1.0 mol/L, pH = 5.0) was added to the system, the reactor was degassed under vacuum. Then the system was irradiated under Xe lamp and repeated several times.

9. Photoelectrochemical measurements: all experiments were performed on an electrochemical workstation (Germany, Zahner Company) in a conventional three-electrode system. The resultant electrode served as the working electrode, platinum as the counter electrode and Ag/AgCl (3.0 M KCl) electrode as the reference electrode. A 20 W blue LED (λ = 450 nm) was used as the light source. A 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte. The working electrodes were prepared by adding 8 µL Nafion (5%) aqueous solution into a 1 mL CdS/Cu₃N solution. Then 3.0 µL obtained solution was dropped onto a clean glassy carbon electrode with an active area of about 0.07 cm², which was cleaned before experiments by ultrasonication with distilled water, ethanol and isopropanol for 15 s, and dried in a vacuum.

10. DFT calculations

Details: the first principles calculations were carried out by the Materials Studio package.⁶ The ion-core interaction was modeled by ultrasoft pseudopotentials⁷ and the exchange–correlation (XC) functionals were described by the generalized gradient approximation (GGA) PW91 functional.⁸ A 600 eV of cutoff energy was used throughout our calculations. The convergence thresholds between optimization cycles for energy change and maximum force were set as 5.0×10^{-6} eV/atom and 0.03 eV/Å, respectively. For bulk band structure calculations, an ultrafine smearing value of 0.001 Å-1 was selected to obtain accurate band gap and dispersion, where the Cu₃N (Pm-3m), Cu₃P (P-3c1), Cu₂O (Pn-3m) and Cu₂S (P63mmc) crystal structure were utilized. In Gibbs energy Δ G calculations, the atoms in the bottom layers were fixed, but the atoms in the three topmost layers, as well as H atoms, were allowed to be relaxed. The dense Monkhorst-Pack grids⁹ of 4×4×1 k-points were applied for the Cu₃N (100), Cu₃P (100), Cu₂O (100) and Cu₂S (001) surface. The DOS projected onto the d-states that interact with the adsorbate state can be characterized by the moments nd (ϵ) of the d DOS. The ϵ is the energy scale. The d-band center

of four catalysts was calculated by formula (1):¹⁰

$$\varepsilon_{d} = \frac{\int_{-\infty}^{\infty} n_{d}(\varepsilon)\varepsilon d\varepsilon}{\int_{-\infty}^{+\infty} n_{d}(\varepsilon)d\varepsilon}$$

+ ∞

The adsorption energy and Gibbs energy ΔG were defined in formula (2) and (3), respectively. $\Delta G = E_{ads} + \Delta ZPE - T\Delta S$ (2)

in which $\Delta ZPE - T\Delta S$ can be assumed to be 0.24 eV¹¹ for H atom and

$$E_{ads} = E_{(H+slab)} - \left[\frac{1}{2}E_{(H_2)} + E_{(slab)}\right]$$
(3)

(1)

where the first term is the total energy of the slab with the adsorbed H^+ on the surface, the second term is the total energy of isolated H_2 molecule, and the third term is the total energy of the bare slab of the surface. According to the above definitions, a negative E_{ads} value corresponds to an exothermic adsorption, and the more negative the E_{ads} , the stronger the adsorption.

11. The calculated band structure of \mbox{Cu}_3N

Fig. S1 The calculated band structure of Cu_3N .

12. The calculated PDOS of Cu_3N

Fig. S2 The partial density of states (PDOS) of Cu_3N .

13. Crystal structure of obtained Cu₃N

Fig. S3 The corresponding crystal structure of synthesized Cu_3N nanocrystals, showing perovskite-type Pm3m structure. Blue and gray balls denote Cu and N atoms, respectively.

14. Full XPS spectrum of Cu₃N

Fig. S4 Full XPS spectrum of obtained Cu_3N , indicating that both of Cu and N elements are found in the spectrum.

15. TEM images of CdS and CdS/Cu $_3N$

Fig. S5 TEM images of (a) CdS and (b) CdS/Cu₃N. As shown in Fig. S5, the flower-like morphology of CdS/Cu₃N is similar to that of CdS. However, the rough surface of CdS/Cu₃N was observed, indicating the integration of Cu₃N with CdS.

16. XRD patterns of various CdS/xCu₃N with different mass ratios

Fig. S6 XRD patterns of CdS/xCu₃N, where x denoting the mass ratio (wt.%) of Cu₃N to CdS. As shown in Fig. S6, the diffraction peaks show little change with the introduction of Cu₃N, due to the low loading and high dispersion of Cu₃N.

17. The corresponding lattice distances of CdS/Cu₃N.

Fig. S7 The corresponding lattice distances of the exposed (100) and (111) planes of Cu_3N , and (002) plane of CdS in CdS/Cu₃N, respectively, in Fig. 2c.

18. EDX spectrum of CdS/Cu₃N

Fig. S8 EDX spectrum of obtained CdS/Cu₃N. As shown in Fig. S8, the EDX spectrum of prepared CdS/Cu₃N indicates the coexistence of elements Cd, S and Cu, implying the successful coupling of Cu_3N with CdS.

19. XPS spectrum of CdS/Cu₃N

Fig. S9 Full XPS spectrum of the obtained CdS/Cu₃N, indicating that Cd, S and Cu elements are found in the spectrum.

20. High-resolution XPS spectra of Cu 2p in CdS/Cu₃N

Fig. S10 High-resolution XPS spectra of Cu 2p for CdS/Cu₃N and Cu₃N. As shown in Fig. S10, the peaks of Cu (I) in Cu₃N are red shifted to ~932.2 and ~952.1 eV after integrated with CdS, further confirming the interaction of Cu₃N with CdS.¹²

Samples	Dosage of Cu₃N (mg)	Cu₃N (wt.%)	
CdS	0	0	
CdS/0.8Cu₃N	1.0	0.8	
CdS/1.3Cu₃N	2.0	1.3	
CdS/2.0Cu₃N	3.0	2.0	
CdS/3.1Cu₃N	5.0	3.1	
CdS/3.9Cu₃N	9.0	3.9	

21. Table. S1 Mass ratios of Cu₃N to CdS determined by ICP-AES

22. UV-vis spectra of various CdS/xCu₃N with different mass ratios

Fig. S11 UV-vis spectra of CdS/xCu₃N (x denoting the mass ratio (wt.%) of Cu₃N to CdS) samples with different dosages of Cu₃N. The inset shows the colors of the above samples.

23. Table. S2 Comparison of photocatalytic activity with reported CdS-based system

Photocatalyst	Electron	Light	H ₂	Enhancem-	AQY (%)	Reference
S	donor	source	generation rate	ent factor		
			(mmol g ⁻¹ h ⁻¹)			
CdS/C60/TiO ₂	0.25 M Na ₂ S, 0.35 M Na ₂ SO ₃	350 W Xe lamp	0.12	8.5	2.0 (420 nm)	ACS Appl. Mater. Interfaces 2015 , 7, 4533.
CdS/Sn ²⁺	glycerol	350 W Xe lamp	1.61	24	10.9 (420 nm)	<i>Small</i> 2020 , 16, 2001024.
CdS/NiS	lactic acid	300 W Xe lamp	158.7	250	74.1 (420 nm)	Chem. Sci., 2018 , 9, 1574.
CdS/MoS ₂	lactic-acid	300 W Xe lamp	6.02	28	22.0 (475 nm)	Nano Res. 2017 , 10, 1377.
CdS/Mo ₂ N	1.0 M Na ₂ S, 1.0 M Na ₂ SO ₃	300 W Xe lamp	0.97	6.1	2.2 (420 nm)	Int. J. Hydrogen Energy 2016 , 41, 22009.
CdS/Ni	methanol	300 W Xe lamp	3.74	133	2.2 (400 nm)	Int. J. Hydrogen Energy 2015 , 40, 998.
CdS/Pt	lactic acid	300 W Xe lamp	16.27	7.7	N/A	J. Mater. Chem. A, 2015 , 3, 23732.
CdS/CuS	0.25 M Na ₂ S, 0.35 M Na ₂ SO ₃	500 W Xe lamp	0.33	3.5	N/A	Int. J. Hydrogen Energy 2013 , 38, 11811.
CdS/Cu₃N	ascorbic acid	300 W Xe lamp	4.5	851	3.9 (450 nm)	this work

24. Wavelength-dependent activity of CdS/Cu₃N for H_2 production

Fig. S12 Wavelength-dependent activity of CdS/Cu₃N for H_2 generation.

25. Stability of CdS/Cu₃N for H₂ production

Fig. S13 Stability of photocatalytic H₂ evolution reaction using CdS/Cu₃N as a photocatalyst and ascorbic acid as a sacrificial reagent. As shown in Fig. S13, even after 8 recycles of the photocatalytic reaction, the system remains 91% of the initial H₂ evolution activity, signifying an excellent stability.

26. XRD pattern of recycled CdS/Cu₃N

Fig. S14 XRD pattern of fresh and recycled CdS/Cu $_3$ N after 8 cycle tests.

27. Elemental mapping of recycled CdS/Cu₃N

Fig. S15 TEM image of recycled CdS/Cu $_3$ N architecture and corresponding elemental mapping of Cd, S and Cu, respectively.

28. XRD patterns of Cu_2O , Cu_2S and Cu_3P

Fig. S16 XRD patterns of the prepared (a) Cu_2O , (b) Cu_2S and (c) Cu_3P , which match well with the standard Cu_2O (PDF No. 74-1230), Cu_2S (PDF No. 84-0206) and Cu_3P (PDF No. 74-1067), respectively.³⁻⁵

29. Activity comparison of Cu_3N with other Cu(I)-based cocatalysts

Fig. S17 Comparison of photocatalytic H_2 generation activity of CdS/Cu₃N with that of CdS/Cu₂S, CdS/Cu₃P, CdS/Cu₂O under identical conditions.

30. UV-vis diffuse reflectance spectra and corresponding Tauc Plots of CdS/Cu₃N

Fig. S18 (a) UV-vis diffuse reflectance spectra and (b) corresponding *Tauc* plots of obtained CdS and CdS/Cu₃N. As shown in Fig. S18a, CdS/Cu₃N exhibits a stronger visible-light absorption and a red-shifted absorption edge compared to CdS, indicating more powerful visible-light harvesting. In addition, CdS/Cu₃N shows a band gap of ~2.31 eV from the corresponding *Tauc* plot (Fig. S18b).

31. Mott-Schottky plots of CdS/Cu₃N

Fig. S19 Mott-Schottky plots of CdS/Cu₃N at frequencies of 1000, 1500 and 2000 Hz. As shown in Fig. S19, flat band potential of CdS/Cu₃N can be estimated as -1.1 V vs Ag/AgCl.¹³

32. Band structure diagram of CdS/Cu₃N

Fig. S20 Schematic illustration for the band structure of CdS/Cu_3N . As shown in Fig. S20, it is thermodynamically feasible for the proton reduction reaction on CdS/Cu_3N .

Sample	B ₁	B ₂	τ_1 / ns	τ_2 / ns	τ/ns
CdS	6.98E-02	8.68E-03	1.44	5.285	2.6
CdS/Cu₃N	5.49E-02	1.51E-02	1.64	6.89	4.5

33. Table. S3 Fitted parameter of PL lifetime in Fig. 4b

The emission decay of CdS in the absence and presence of Cu_3N were studied and the decay curves for the samples were well fitted with double-exponential function Y(t) based on nonlinear least-squares, using the following equation:

$$Y(t) = B_1 \exp(-t / \tau_1) + B_2 \exp(-t / \tau_2)$$

Where B_1 , B_2 are fractional contributions from time-resolved emission decay lifetime τ_1 , τ_2 , as shown in Table S2. The average lifetime τ could be obtained from the following equation:

$$<\tau>=\frac{B_{1}\tau_{1}^{2}+B_{2}\tau_{2}^{2}}{B_{1}\tau_{1}+B_{2}\tau_{2}}$$

34. References

a) D. D. Vaughn II, J. Araujo, P. Meduri, J. F. Callejas, M. A. Hickner and R. E. Schaak, *Chem. Mater.* 2014, **26**, 6226; b) H. Wu and W. Chen, *J. Am. Chem. Soc.* 2011, **133**, 15236.

2. D. Wang, Y. Li, Chem. Commun. 2011, 47, 3604.

3. Z. Zhuang, Q. Peng, B. Zhang and Y. Li, J. Am. Chem. Soc. 2008, 130, 10482.

4. R. Shen, J. Xie, X. Lu, X. Chen and X. Li, ACS Sustainable Chem. Eng. 2018, 6, 4026.

5. J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du and S. Z. Qiao, *Nat Commun* 2017, **8**, 13907.

6. S. Clark, M. Segall, C. Pickard, P. Hasnip, M. Probert, K. Refson and M. Payne, *Z Kristallogr* 2005, **220**, 567.

7. D. Vanderbilt, *Phys Rev B* 1990, **41**, 7892.

8. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys Rev Lett* 1996, 77, 3865.

9. H. J. Monkhorst, J. D. Pack, *Phys Rev B* 1976, **13**, 5188.

10. J. K. Nørskov, F. Studt, F. Abild-Pedersen and T. Bligaard, John Wiley & Sons, Inc., 2014. 1114.

11. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Joergensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Noerskov, *J. Am. Chem. Soc.* 2005, **127**, 5308-5309

12. Z. Wang, L. Xu, F. Huang, L. Qu, J. Li, K. A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X.

Liao, W. Yang, Y. B. Cheng and L. Mai, Adv Engery Mater 2019, 9, 1900390.

13. G. Wang, T. Zhang, W. Yu, R. Si, Y. Liu and Z. Zhao, ACS Catal. 2020, 10, 5715.