Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

## **Supplementary Information**

Metal Oxide-Free Flexible Organic Solar Cells with 0.1 M Perchloric Acid Sprayed Polymeric Anodes

Juanyong Wan,<sup>a,c</sup> Xi Fan,<sup>a,b,\*</sup> Huihui Huang,<sup>c</sup> Jinzhao Wang,<sup>d</sup> Zhiguo Zhang,<sup>e</sup> Junfeng Fang<sup>a</sup> and Feng Yan<sup>b</sup>

<sup>a</sup>Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China. E-mail: fanxi@nimte.ac.cn.

<sup>b</sup>Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.

<sup>c</sup>School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China.

<sup>d</sup>Department of Material Science and Engineering, Hubei University, Wuhan 430062, P. R. China.

<sup>e</sup>State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.



Fig. S1 Aggregate morphology of the PEDOT:PSS anodes with >99.5 wt%  $CH_3SO_3H$  soaking treatment.



Fig. S2 Molecular structures of PEDOT:PSS, PDINO and PDINN.



**Fig. S3** Plotted PCE values of single-junction flexible OSCs reported in literatures and in this work.



Fig. S4 The integrated current density of the flexible OSCs based on the PEDOT:PSS electrodes with the  $HClO_4$  treatments.



**Fig. S5**  $V_{oc}$  versus light intensity of the flexible OSCs based on the PEDOT:PSS electrodes with the HClO<sub>4</sub> treatments (n=1.45) and the CH<sub>3</sub>SO<sub>3</sub>H treatments (n=1.58), respectively.



Fig. S6 The dark current density of the flexible OSCs based on the PEDOT:PSS electrodes with the  $HClO_4$  treatments (a) and the  $CH_3SO_3H$  treatments (b).

**Tab. S1** Summaries of photovoltaic characteristics of single-junction flexible organicsolar cells with flexible transparent electrodes

| Flexible electrode | Preparation method | Active layer | PCE (%) | Refer. |
|--------------------|--------------------|--------------|---------|--------|
|                    |                    |              |         |        |

| ZnO/Cu(8.0 nm) on Cu(O)/ZnO          | Magnetron sputtering/Thermal evaporation | PTB7:PC71BM                     | 6.70        | <b>S1</b>   |
|--------------------------------------|------------------------------------------|---------------------------------|-------------|-------------|
| ZnO/Cu(9.5 nm) on Cu(O)/ZnO          |                                          | PTB7:PC <sub>71</sub> BM        | 7.7         | S2          |
| ZnO/Cu (0:5%)(7 nm)/ZnO              |                                          | PTB7-Th:PC71BM                  | 7.65        | S3          |
| TiO <sub>2</sub> /ZnO/Ag(8.0 nm)/ZnO | Vacuum sputtering                        | PBDB-T:IT-M:PC <sub>71</sub> BM | 10.48%      | <b>S</b> 4  |
|                                      |                                          |                                 | Best: 10.62 |             |
| Ag grid/PEDOT:PSS                    | Thermal evaporation/Solution preparation | PTB7-Th:PC71BM                  | 6.58        | S5          |
| Ag mesh/PEDOT:PSS                    | Printing/Solution preparation            | PTB7:PC <sub>71</sub> BM        | 6.73        | S6          |
| Ag NW                                | Solution preparation                     | PTB7-Th:PC <sub>71</sub> BM     | 8.75        | S7          |
| Ag island/PEDOT:PSS                  | Thermal evaporation/Solution preparation | PTB7-Th:PC <sub>71</sub> BM     | 9.8         | <b>S</b> 8  |
|                                      |                                          |                                 | Best: 9.9   |             |
| Ag NW/Al-ZnO                         | Solution preparation                     | PM6:IT-4F                       | 12.02       | S9          |
| Ag/Cu grid                           | Nanoimprinting and electrodeposition     | NF3000-P:NF3000-N               | 12.26       | S10         |
| Ag NW/PSSNa                          | Solution preparation                     |                                 | 13.1        | <b>\$11</b> |
| Ag NW/Al-ZnO                         | Solution preparation                     | PBDB-T-2F:Y6                    | 14.93       | <b>\$12</b> |
|                                      |                                          |                                 | Best:15.21  |             |
| Transferred Ag NW/ZnO                | Solution preparation                     | PM6:N3:PC71BM                   | 15.6        | S13         |
|                                      |                                          |                                 | Best: 16.1  |             |
| Graphene                             | Chemical vapor deposition                | РМ6:Ү6                          | 14.8        | S14         |
|                                      |                                          |                                 | Best: 15.2  |             |
| PEDOT:PSS                            | Aqueous solution preparation             | PBDTT-S-TT:PC71BMP              | 6.42        | S15         |

| PEDOT:PSS | Aqueous solution preparation | TB7-Th:PC <sub>71</sub> BM | 7.7         | <b>S16</b> |
|-----------|------------------------------|----------------------------|-------------|------------|
| PEDOT:PSS | Aqueous solution preparation | PBDB-T:IT-M                | 10.03       | S17        |
|           |                              |                            | Best: 10.12 |            |
| PEDOT:PSS | Aqueous solution preparation | PCE-10:IEICO-4F            | 12.5        | S18        |
| PEDOT:PSS | Aqueous solution preparation | PM6:Y6:PC <sub>71</sub> BM | 14.06       | S19        |
| PEDOT:PSS | Aqueous solution preparation | PM6:Y6                     | 16.44       | Here       |

Best:16.71

## References

- [1] G. Zhao, S. M. Kim, S. Lee, T. Bae, C. Mun, S. Lee, H. Yu, G. Lee, H. Lee, M. Song, J.
   Yun, Adv. Funct. Mater. 2016, 26, 4180.
- [2] G. Zhao, M. Song, H. Chung, S. M. Kim, S. Lee, J. Bae, T. Bae, D. Kim, G. Lee, S. Z.
   Han, H. Lee, E. Choi, J. Yun, ACS Appl. Mater. Interfaces, 2017, 9, 38695.
- [3] G. Zhao, W. Wang, T. Bae, S. Lee, C. Mun, S. Lee, H. Yu, G. Lee, M. Song, J. Yun, *Nat. Commun.* 2015, 6, 8830.
- [4] Q. Liu, J. Toudert, L Ciammaruchi, G. Martinez-Denegri, J. Martorell, J. Mater. Chem. A 2017, 5, 25476-25484.
- [5] J. Wang, F. Fei, Q. Luo, S. Nie, N. Wu, X. Chen, W. Su, Y. Li, C. Ma, ACS Appl. Mater. Interfaces 2017, 9, 7834.
- [6] W. Kim, S. Kim, I. Kang, M. S. Jung, S. J. Kim, J. K. Kim, S. M. Cho, J. -H. Kim, J. H. Park, *ChemSusChem* **2016**, *9*, 1042.
- [7] J. H.Seo, I. Hwang, H. -D. Um, S. Lee, K. Lee, J. Park, H. Shin, T. -H. Kwon, S. J. Kang,
  K. Seo, Adv. Mater. 2017, 29, 1701479.
- [8] H. Kang, S.Jung, S. Jeong, G. Kim, K. Lee, Nat. Commun. 2015, 6, 6503.
- [9] Y. X. Zhang, J. Fang, W. Li, Y. Shen, J. D. Chen, Y. Li, H. Gu, S. Pelivani, M. Zhang, Y.
   Li, J. X. Tang, ACS Nano 2019, 13, 4686–4694.
- [10] Y. F. Han, X. L. Chen, J. F.Wei, G. Q. Ji, C. Wang, W. C. Zhao, J. Q. Lai, W. S. Zha, Z.
  R. Li, L. P. Yan, H. M. Gu, Q. Luo, Q. Chen, L. W. Chen, J. H. Hou, W. M. Su, C. Q. Ma, *Adv. Sci.* 2019, *6*, 1901490.
- [11] Y. N. Sun, M. J. Chang, L. X. Meng, X. J.Wan, H. H. Gao, Y. M. Zhang, K. Zhao, Z. H. Sun, C. X. Li, S. R. Liu, H. K.Wang, J. J. Liang, Y. S. Chen, *Nat. Electron.* **2019**, *2*, 513–520.
- [12] X. B. Chen, G. Y. Xu, G. Zeng, H. W. Gu, H. Y. Chen, H. T. Xu, H. F. Yao, Y. W. Li, J. H. Hou, Y. F. Li, *Adv. Mater.* 2020, *32*, 1908478.

- [13] T. Y. Qu, L. J. Zuo, J. D. Chen, X. L. Shi, T. Zhang, L. Li, K. C. Shen, H. Ren, S. Wang,
   F. M. Xie, Y. Q. Li, Alex K. Y. Jen, J. X. Tang, *Adv. Optical Mater.* 2020, 2000669.
- [14] D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi, J. Lee, S. M. Lee, Y. Cho, M. Jeong, J. Lee,J. Oh, C. Yang, H. Park, *Joule* 2020, *4*, 1-14.
- [15] X. Fan, B. G. Xu, S. H. Liu, C. H. Cui, J. Z. Wang, F. Yan, ACS Appl. Mater. Interfaces 2016, 8, 14029.
- [16] N. Kim, H. Kang, J. -H. Lee, S. Kee, S. H. Lee, K. Lee, Adv. Mater. 2015, 27, 2317.
- [17] W. Song, X. Fan, et al., Adv. Mater. 2018, 30, 1800075.
- [18] S. X. Xiong, L. Hu, L. Hu, L. L. Sun, F. Qin, X. J. Liu, M. Fahlman, Y. H. Zhou. Adv. Mater. 2019, 31, 1806616.
- [19] T. Yan, W. Song, et al. Adv. Mater. 2019, 31, 1902210.

**Tab. S2** Physical Properties of PEDOT:PSS (Clevios PH1000) and PEDOT:PSS (Clevios P VP AI4083) Used to make transparent electrodes and hole transport layers, respectively

| Product | Solids   | PEDOT:PSS ratio | Particle size  | Viscousity | Film             | Work       |
|---------|----------|-----------------|----------------|------------|------------------|------------|
|         | content  | (by weight)     | (nm)           | (cP)       | resistance       | function   |
|         |          |                 | d50            |            | (Ω.cm)           |            |
| P VP    | 1.3–1.7% | 1:6             | Max:35         | 5–12       | 500–5000         | 5.0–5.2    |
| AI4083  |          |                 | distribution50 |            |                  |            |
|         |          |                 |                |            |                  |            |
| PH1000  | 1.0–1.3% | 1:1.25          | Major:120      | 15–50      | <0.0012          | 4.8–5.2 eV |
|         |          |                 |                |            | (with<br>doping) |            |