Supporting Information for

Distorted quantum dots enhancing efficient alkaline oxygen electrocatalysis

Xiaoyu Zhang¹, Weiwei Fu¹, Wu Tian¹, Jin Wan¹, Han Zhang^{2*} and Yu Wang^{1,2*}

¹The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.

²The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.

Scheme S1. Microscopic view of caterpillar-like structure.

Fig. S1 (a, b) SEM images of widespread $VNi(OH)_x$ and D-Ni₃N QDs/VN structures.

Fig. S2 High-magnification TEM image of D-Ni $_3$ N QDs/VN.

Fig. S3 XRD spectrum of $VNi(OH)_x$.

Fig. S4 High-resolution XPS spectrum of N1s.

Fig. S5 Initial potentials and half-wave potentials of samples.

Fig. S6 (a) Polarization curves at different rotation rates of Pt/C. (b) Koutecky–Levich plots of Pt/C.

Fig. S7 (a) RRDE test on D-Ni₃N QDs/VN and Pt/C in O-saturated 0.1 M KOH solution, respectively. (b) Corresponding peroxide percentage and electron transfer number of ORR. The H_2O_2 yield of D-Ni₃N QDs/VN is 1.2-10%, slightly higher than Pt/C (1-6.8%) in the same range of ORR test. The electron transfer number (n) of ORR on D-Ni₃N QDs/VN is 3.83-3.98, whereas the n value of Pt/C is 3.86-3.98. The result demonstrates a 4-electron oxygen reduction pathway on the surface of D-Ni₃N QDs/VN.¹ We use the following equation to calculate the electron transfer number (n) and the peroxide percentage.²

$$n = 4 * \frac{I_d}{I_d + I_r/N}$$
$$H_2 O_2 \% = 200 * \frac{I_r/N}{I_d + I_r/N}$$

Where I_d is the disk current, I_r is the ring current, and N is the collection efficiency (0.37) of the ring electrode.³

Fig. S9 (a) The XRD spectrum of D-Ni₃N QDs/VN after ORR test. (b, c) High-resolution XPS spectra of Ni 2p and V 2p for post-test D-Ni₃N QDs/VN.

Fig. S10 SEM image of D-Ni₃N QDs/VN after ORR.

Fig. S11 (a) The XRD spectrum of D-Ni₃N QDs/VN after OER test. (b, c) High-resolution XPS spectra of Ni 2p and V 2p for post-test D-Ni₃N QDs/VN.

Fig. S12 SEM image of D-Ni $_3$ N QDs/VN after OER.

Fig. S13 (a) TEM image of widespread Ni_3N QDs/CC, (b) High-magnification TEM image of Ni_3N QDs/CC.

Table	S1 .	Comparison	of the	catalytic	activity	of D-Ni ₃ N	QDs/VN	to th	e repoi	rted
transiti	on-n	netal-based (ORR ca	talysts						

No.	catalysts	electrolyte	E _o vsRHE (V)	E _{1/2} (V)	b (mV/dec)	Ref.
1	NEAL CNC.	0.1 M KOH	0.925	0.775		Adv. Mater.
	NI/N-CNCs				-	2017, 29, 1605083
2	V _{0.95} Co _{0.05} N MFs	0.1 M KOH	0.903	0.802	-	ACS Appl. Mater. Interfaces
						2018, 10, 11604–11612
3	Ni ₃ Fe/N-C	0.1 M KOH	-	0.810	79	J. Electroanal. Chem.
						851 (2019) 113418
4	Co/Ni-N-C	0.1 M KOH	0.930	0.840	-	Appl. Catal. B
						240 (2019) 112–121
5	CSV10	0.1 M KOH	0.797	0.737	120	Carbon
						144 (2019) 289e300
6	Co-NiMoN	0.1 M KOH	0.890	0.730	-	ACS Appl. Mater. Interfaces
						2019, 11, 27751-27759
7	FeNi ₃ N/NG	0.1 M KOH	0.880	0.790	83	J. Mater. Chem. A,
						2019, 7, 1083
8	FeNC-900	0.1 M KOH	0.959	0.837	86.2	Nanoscale
						2019,11, 19506-19511
9	W ₂ N/WC	0.1 M KOH	0.930	0.810	-	Adv. Mater.
						2020, 32, 1905679
10	D-Ni ₃ N QDs/VN	0.1 M KOH	0.963	0.837	81	This work

No.	catalysts	electrolyte	η (mV)	b (mV/dec)	Ref.	
1	Ni ₃ FeN	0.1 M KOH	$\eta_{j=10} = 355$	70	Nano Energy	
					39 (2017) 77–85	
2	Ni ₃ N/NC	1.0 M KOH	$\eta_{j=10} = 310$	-	Chem. Commun.,	
					2017, 53, 95669569	
3	Ni ₃ N/NC holey sheets	1.0 M KOH	η _{j=10} =260	51	ACS Appl. Energy Mater.	
					2018, 1, 6774–6780	
4	Ni ₃ Fe/N-C	1.0 M KOH	$\eta_{j=10} = 310$	58	J. Electroanal. Chem.	
					851 (2019) 113418	
5	NiCo ₂ N	1.0 M KOH	$\eta_{j=10} = 289$	56	Adv. Mater. Interfaces	
					2019, 6, 1900960	
6	NB-HO	1.0 M KOH	$\eta_{j=10} = 247$	79	J. Mater. Chem. A,	
					2019, 7, 22063	
7	NiMoN-400 NRs	1.0 M KOH	$\eta_{j=10} = 294$	73	ACS Appl. Mater. Interfaces	
					2019,11, 27751-27759	
8	N-NiVFeP/NFF	1.0 M KOH	$\eta_{j=10} = 229$	72.6	Appl. Catal. B	
					268 (2020) 118440	
9	W ₂ N/WC	1.0 M KOH	$\eta_{j=10} = 320$	94.5	Adv. Mater.	
					2020, 32, 1905679	
10	D-Ni ₃ N QDs/VN	0.1 M KOH	$\eta_{j=10} = 226$	54	This work	
	1					

Table S2. Comparison of the catalytic activity of D-Ni₃N QDs/VN to the reported transition-metal-based OER catalysts

Reference

- 1. X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu and Y. Deng, *Advanced materials*, 2019, **31**, e1808281.
- 2. S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek and L. Dai, *Angewandte Chemie*, 2012, **51**, 4209-4212.
- 3. C. Du, P. Li, F. Yang, G. Cheng, S. Chen and W. Luo, *ACS applied materials & interfaces*, 2018, **10**, 753-761.