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Figure S1. Optimized ground geometries for (a) one repeating unit of D18 and (b) Y6 containing 

whole alkyl groups.
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Figure S2. HOMO and LUMO for (a) one repeating unit, (b) two repeating units, (c) three 

repeating units of D18.
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Figure S3. Optimized ground geometries for (a) two repeating units of D18 and (b) Y6 where 

alkyl groups are all replaced by methyl.
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Figure S4. Initial intermolecular configuration of the D18/Y6 complex.
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Figure S5. Optimized geometries of the (a) S0, (b) S1, and (c) cationic states for D18.



S8

-0.4 -0.2 0.0 0.2 0.4
0

20

40

60

-0.4 -0.2 0.0 0.2 0.4

-0.16 -0.08 0.00 0.08 0.16
0

20

40

60

-1.6 -0.8 0.0 0.8 1.6

dy (Å)

En
er

gy
 D

iff
er

en
ce

 (m
eV

)

dx (Å)

dz (Å)

En
er

gy
 D

iff
er

en
ce

 (m
eV

)

  (°)

Figure S6. Energy differences between the configurations derived from translation (dx, dy, dz) and 

rotation (θ) of Y6 and the optimized configuration.



S9

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
1.0

1.2

1.4

1.6

1.8

2.0

-0.2 -0.1 0.0 0.1 0.2 0.3

-0.10 -0.05 0.00 0.05 0.10
1.0

1.2

1.4

1.6

1.8

2.0

-1.6 -0.8 0.0 0.8

CT2A

CT2D
CT1A

CT1D

E C
T 

(e
V)

dx (Å)

CT0

dy (Å)

E C
T 

(e
V)

dz (Å)   (°)

Figure S7. Calculated energies of the CT0, CT1D, CT1A, CT2D and CT2A states as a function of dx, 

dy, dz, and θ for the D18/Y6 complex.
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Figure S8. Gibbs free energies for exciton dissociation from the S1 state of Y6 (S1A) and D18 (S1D) 

to the CT0, CT1D, CT1A, CT2D, and CT2A states, and charge recombination from the CT0 to S0 state 

as a function of dx, dy, dz, and θ for the D18/Y6 complex.
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Figure S9. Evolution of the rates (s-1) for exciton dissociation from the S1 state of D18 to CT0 

(kS1D) as a function of dx, dy, dz, and θ for the D18/Y6 complex.


