Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Understanding Activity Origin for Oxygen Reduction Reaction on

Bi-Atom Catalysts by DFT Study and Machine-Learning

Chaofang Deng^[a, b], Yang Su^[b], Fuhua Li^[b], Weifeng Shen^[b], Zhongfang Chen^{*, [c]}and

Qing Tang*,[b]

^[a] Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals,

Chongqing University of Education, Chongqing 400067, China

^[b] School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of

Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331,

China

^[c]Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan, PR 00931, USA

* To whom correspondence should be addressed. E-mail: <u>zhongfangchen@gmail.com;</u> <u>gingtang@cqu.edu.cn.</u>

Computational details

The detailed pathway for associative mechanism in ORR was adopted in our work as the following four steps:

$O_2 + H^+ + e^- \leftrightarrow *OOH$	(SR1)
*OOH+ H^+ + $e^- \leftrightarrow *O + H_2O$	(SR2)
$*O + H^+ + e^- \leftrightarrow *OH$	(SR3)
$*OH + H^+ + e^- \leftrightarrow * + H_2O$	(SR4)

Accordingly, considering the effect of electrode potential (U), the reaction free energy of SR1-SR4 can be calculated by:

$$\Delta G_1 = G_{*OOH} - G_{*O_2} - 0.5G_{H_2} + eU$$
(S1a)

$$\Delta G_2 = G_{*O} + G_{H_2O} - G_{*OOH} - 0.5G_{H_2} + eU$$
 (S1b)

$$\Delta G_3 = G_{*\rm OH} - G_{*\rm O} - 0.5G_{\rm H_2} + eU \tag{S1c}$$

$$\Delta G_4 = G_{\rm H_2O} + G_* - G_{\rm *OH} - 0.5G_{\rm H_2} + eU$$
 (S1d)

Owing to the high-spin ground state of the O_2 molecule, it is poorly described in DFT computations. To avoid calculating energy of O_2 , we first calculated reaction free energy of equations of S2a-S2c.

*+2
$$H_2O \leftrightarrow$$
*OOH+3/2 H_2 (S2a)

$$^{*+}\mathrm{H}_{2}\mathrm{O} \leftrightarrow ^{*}\mathrm{O} + \mathrm{H}_{2} \tag{S2b}$$

$$^{*+}\text{H}_{2}\text{O} \leftrightarrow ^{*}\text{OH}^{+1/2}\text{H}_{2}$$
 (S2c)

Then, the reaction free energy of equations of S2a-S2c can be defined as:

$$\Delta G_{*\rm OOH} = 1.5G_{*\rm H_2} + G_{*\rm OOH} - 2G_{\rm H_2O} - G_* \tag{S3a}$$

$$\Delta G_{*_{\rm O}} = G_{*_{\rm H_2}} + G_{*_{\rm O}} - G_{_{\rm H_2O}} - G_* \tag{S3b}$$

$$\Delta G_{*\rm OH} = 0.5G_{*\rm H_2} + G_{*\rm OH} - G_{\rm H_2O} - G_* \tag{S3c}$$

At the equilibrium potential of 1.23 V, the reaction free energy of $O_2 + 4H^+ + 4e^- \leftrightarrow 2H_2O$ is 4.92 eV. Therefore, ΔG_1 can be determined by $\Delta G_1 = 4.92 - (\Delta G_2 + \Delta G_3 + \Delta G_4)$. Combining with equations S3a-S3c, the reaction free energy of SR1-SR4 can be represented by:

 $\Delta G_{\rm I} = \Delta G_{\rm *OOH} - 4.92 + eU \tag{S4a}$

$$\Delta G_2 = \Delta G_{*0} - \Delta G_{*00H} + eU \tag{S4b}$$

$$\Delta G_3 = \Delta G_{*_{\rm OH}} - \Delta G_{*_{\rm O}} + eU \tag{S4c}$$

$$\Delta G_4 = -\Delta G_{*\rm OH} + eU \tag{S4d}$$

Based on above analysis, the elementary reaction of SR1-SR4 can be expressed by the adsorption free energies of OOH (ΔG_{*OOH}), O (ΔG_{*O}) and OH (ΔG_{*OH}).

The detailed pathway for dissociative mechanisms in ORR was adopted in our work as the following five steps:

$$O_2 \leftrightarrow *O_A *O_B$$
 (SR5)

$$*O_{A}*O_{B}+H^{+}+e^{-}\leftrightarrow *O_{B}*OH$$
(SR6)

$$*O_{B}*OH+H^{+}+e^{-}\leftrightarrow *O_{B}+H_{2}O$$
(SR7)

$$*O_{\rm B} + {\rm H}^+ + {\rm e}^- \leftrightarrow *{\rm O}{\rm H}$$
 (SR8)

$$*OH + H^+ + e^- \leftrightarrow * + H_2O$$
 (SR9)

Similarly, the reaction free energy of SR5-SR8 can be represented by:

$$\Delta G'_{\rm l} = \Delta G_{*O_{\rm A}} * O_{\rm B}} - 4.92 \tag{S5a}$$

$$\Delta G'_{2} = \Delta G_{*O_{B}*OH} - \Delta G_{*O_{A}*O_{B}} + eU$$
(S5b)

$$\Delta G'_3 = \Delta G_{*O_B} - \Delta G_{*O_B*OH} + eU$$
(S5c)

$$\Delta G'_{4} = \Delta G_{*_{\text{OH}}} - \Delta G_{*_{\text{OB}}} + eU$$
(S5d)
$$\Delta G'_{5} = -\Delta G_{*_{\text{OH}}} + eU$$
(S5e)

$$\Delta G_5 = -\Delta G_{*\rm OH} + eU \tag{S5e}$$

Figure S1. Correlations between adsorption free energy of oxygenated intermediates (*OOH, *O and *OH) and the d-band center of metal dimer in BACs.

Figure S2. The reaction free energy diagrams at three different potentials for homonuclear Co_2/NC BACs.

Figure S3. The reaction free energy diagrams at three different potentials for the 8 screened out promising heteronuclear BACs.

Catalysts	∆G _{*OOH}	ΔG∗o	ΔG∗ _{OH}	UL
Sc ₂ /NC	3.24	-0.25	-0.26	-0.26
Ti ₂ /NC	1.90	-1.17	-1.42	-1.42
V ₂ /NC	1.75	-1.68	-0.95	-0.95
Cr ₂ /NC	3.30	-0.21	-0.03	-0.17
Mn ₂ /NC	3.11	0.02	0.07	-0.05
Fe ₂ /NC	3.05	0.41	-0.06	-0.06
Co ₂ /NC	4.10	1.74	0.90	0.82
Ni ₂ /NC	4.43	2.44	1.37	0.49
Cu ₂ /NC	4.90	3.42	1.76	0.02
Zn ₂ /NC	4.58	4.16	1.21	0.34
Y ₂ /NC	1.10	-0.93	-2.20	-2.20
Zr ₂ /NC	-3.08	-1.97	-2.03	-2.03
Nb ₂ /NC	-3.42	-1.24	-2.76	-2.76
Mo ₂ /NC	1.21	0.32	0.71	-0.39
Ru ₂ /NC	3.62	0.94	0.59	0.35
Rh ₂ /NC	3.59	1.65	0.54	0.54
Pd ₂ /NC	4.66	3.19	1.63	0.26
Ag ₂ /NC	3.48	3.86	1.65	-0.38
Hf ₂ /NC	-3.63	-2.11	-2.34	-2.34
Ta ₂ /NC	-4.35	-2.80	-3.22	-3.22
W ₂ /NC	0.36	-0.36	0.46	-0.82
Re ₂ /NC	2.33	-0.26	-0.48	-0.48
Os ₂ /NC	3.70	0.99	-0.58	-0.58
Ir ₂ /NC	3.32	1.15	0.24	0.24
Pt ₂ /NC	4.60	1.84	1.34	0.32
Au ₂ /NC	3.51	3.68	2.25	-0.17

Table S1. Adsorption free energy (in eV) of oxygenated intermediates (associative mechanism) on different homonuclear BACs and the corresponding limiting potential (in V).

Catalysts	ΔG*0*0	ΔG _{*O*OH}	∆G _{*0}	∆G _{*OH}	UL
Sc ₂ /NC	0.89	-1.81	-0.25	-0.26	-1.56
Ti ₂ /NC	-2.36	-2.48	-1.17	-1.42	-1.42
V ₂ /NC	-2.46	-2.10	-1.68	-0.95	-0.95
Cr ₂ /NC	-1.91	-2.03	-0.21	-0.03	-1.82
Y ₂ /NC	1.13	-1.53	-0.93	-2.20	-2.20
Zr ₂ /NC	-3.56	-3.23	-1.97	-2.03	-2.03
Nb ₂ /NC	-3.73	-3.57	-1.24	-2.76	-2.76
Mo ₂ /NC	-0.52	0.00	0.32	0.71	-0.52
Ru ₂ /NC	1.97	0.93	0.94	0.59	-0.01
Hf ₂ /NC	-4.06	-3.78	-2.11	-2.34	-2.34
Ta ₂ /NC	-4.75	-4.50	-2.80	-3.22	-3.22
W ₂ /NC	-2.18	-1.53	-0.36	0.46	-1.17
Re ₂ /NC	-0.10	-0.39	-0.26	-0.48	-0.48

Table S2. Adsorption free energy (in eV) of oxygenated intermediates (dissociative mechanism) on different homonuclear BACs and the corresponding limiting potential (in V).

Catalysts	*OOH	*0	*OH
Co ₂ /NC			
CoZn/NC			
CoNi/NC			
CoPd/NC			
CoCu/NC			
RhNi/NC			
RhPd/NC			
RhPt/NC			
CuMn/NC			

Table S3. The adsorption geometry of ORR intermediates on the 8 optimal catalysts.

Catalysts	ΔG _{*OOH}	∆G∗o	∆G _{*OH}	UL
CoRh/NC	3.79	1.60	0.69	0.69
CoRu/NC	3.44	0.68	0.58	0.11
CoIr/NC	3.78	1.48	0.69	0.69
CoFe/NC	3.50	0.75	0.23	0.23
CoMn/NC	3.70	0.75	0.43	0.32
CoZn/NC	3.94	1.88	0.80	0.80
CoNi/NC	4.04	1.87	0.88	0.88
CoPd/NC	4.03	1.75	0.84	0.84
CoPt/NC	3.81	2.21	0.70	0.70
CoCu/NC	4.14	2.14	1.05	0.78
ZnRh/NC	4.78	2.30	1.20	0.14
ZnRu/NC	3.12	0.85	0.16	0.16
ZnIr/NC	4.41	1.84	0.85	0.51
ZnFe/NC	3.85	1.58	0.66	0.66
ZnMn/NC	3.74	1.29	0.47	0.47
ZnNi/NC	4.20	2.60	1.14	0.72
ZnPd/NC	4.52	3.57	1.11	0.40
ZnPt/NC	4.37	3.45	0.96	0.55
ZnCu/NC	4.67	3.63	1.58	0.25
NiRh/NC	3.98	1.82	0.85	0.85
NiRu/NC	3.61	0.99	0.40	0.40
Nilr/NC	3.98	1.47	0.74	0.73
NiFe/NC	3.56	1.01	0.45	0.45
NiMn/NC	3.82	1.13	0.57	0.56
NiPd/NC	4.36	3.00	1.25	0.56
NiPt/NC	4.30	2.96	1.22	0.62
NiCu/NC	4.48	2.76	1.34	0.44
PdRh/NC	4.13	1.82	0.95	0.79
PdRu/NC	3.81	1.13	0.62	0.51
PdIr/NC	4.19	1.60	0.95	0.65
PdFe/NC	3.90	1.24	0.74	0.50
PdMn/NC	4.13	1.32	0.85	0.46
PdPt/NC	4.64	2.23	1.69	0.28
PdCu/NC	4.79	3.63	1.66	0.13
PtRh/NC	4.02	1.62	0.81	0.81
PtRu/NC	3.79	1.14	0.60	0.54
PtIr/NC	4.12	1.47	0.86	0.60
PtFe/NC	3.96	1.15	0.79	0.36
PtMn/NC	3.84	1.09	0.82	0.27

Table S4. Adsorption free energy (in eV) of oxygenated intermediates on different heteronuclear BACs and the corresponding limiting potential (in V).

PtCu/NC	4.74	3.59	1.61	0.18
CuRh/NC	3.68	2.13	0.55	0.55
CuRu/NC	3.23	1.05	0.15	0.15
CuIr/NC	3.48	1.66	0.33	0.33
CuFe/NC	3.71	1.64	0.60	0.60
CuMn/NC	3.95	1.69	0.82	0.82
RhRu/NC	2.95	0.72	-0.09	-0.09
RhIr/NC	3.62	1.20	0.52	0.52
RhFe/NC	3.40	1.40	0.30	0.30
RhMn/NC	3.54	1.08	0.28	0.28
RuIr/NC	2.85	0.44	-0.20	-0.20
RuFe/NC	2.13	0.75	0.55	0.20
RuMn/NC	1.87	0.51	0.47	0.04
IrFe/NC	3.37	1.49	0.26	0.26
IrMn/NC	3.50	1.40	0.25	0.25
FeMn/NC	3.30	0.33	0.03	0.03

	pyrroN3	pyriN6
geometry		
$E_{ m _f}^{'}$	4.42	3.99

Table S5. The formation energy (in eV) for two N-doped graphene geometry (reference to graphene and nitrogen).

Table S6. The formation energy (in eV) for the nine promising BACs (reference to graphene and nitrogen).

BACs	Co ₂ /NC	CoZn/NC	CoNi/NC	CoPd/NC	CoCu/NC
$E_{_{ m f}}^{'}$	2.68	2.40	2.34	2.54	2.39
BACs	RhNi/NC	RhPd/NC	RhPt/NC	CuMn/NC	

Table S7. Summary of the distance of two metal atoms (M-M, Å), average distance between two metal atoms and the coordinated N atoms (M-N, Å), Radii of two metal atoms (R_1 and R_2 , pm), the outer electron number of two metal atoms (N_{e1} and N_{e2}), the Pauling electronegativity of two atoms (P_1 and P_2), first ionization energy of two atoms (I_1 and I_2 , aJ) and electron affinity of two atoms (A_1 and A_2 , kJ/mol).

Catalysts	M-M	M-N	R ₁	N _{e1}	P ₁	I ₁	A ₁	R ₂	N _{e2}	P ₂	I ₂	A ₂
Fe ₂ /NC	2.397	1.925	126	8	1.8	759.3	44	126	8	1.8	759.3	44
Mn ₂ /NC	2.495	1.972	137	7	1.5	717.4	-94	137	7	1.5	717.4	-94
Ir ₂ /NC	2.628	1.986	136	9	2.2	880	190	136	9	2.2	880	190
Ru ₂ /NC	2.478	2.003	134	8	2.2	711	146	134	8	2.2	711	146
Rh ₂ /NC	2.590	1.983	134	9	2.2	720	162	134	9	2.2	720	162
Co ₂ /NC	2.532	1.883	125	9	1.9	760	102	125	9	1.9	760	102
Zn ₂ /NC	2.629	2.014	137	12	1.6	906.4	9	137	12	1.6	906.4	9
Ni ₂ /NC	2.685	1.887	125	10	1.9	736.7	156	125	10	1.9	736.7	156
Pt ₂ /NC	2.579	1.998	139	10	2.2	870	247	139	10	2.2	870	247
Pd ₂ /NC	2.599	1.997	137	10	2.2	805	98.4	137	10	2.2	805	98.4
Cu ₂ /NC	2.515	1.968	128	11	1.9	745.4	118.3	128	11	1.9	745.4	118.3
CoRh/NC	2.535	1.938	125	9	1.9	760	102	134	9	2.2	720	162
CoRu/NC	2.455	1.955	125	9	1.9	760	102	134	8	2.2	711	146
CoIr/NC	2.528	1.939	125	9	1.9	760	102	136	9	2.2	880	190
CoFe/NC	2.294	1.931	125	9	1.9	760	102	126	8	1.8	759.3	44
CoMn/NC	2.452	1.927	125	9	1.9	760	102	137	7	1.5	717.4	-94
CoZn/NC	2.595	1.941	125	9	1.9	760	102	137	12	1.6	906.4	9
CoNi/NC	2.518	1.894	125	9	1.9	760	102	125	10	1.9	736.7	156
CoPd/NC	2.512	1.942	125	9	1.9	760	102	137	10	2.2	805	98.4
CoPt/NC	2.602	1.938	125	9	1.9	760	102	139	10	2.2	870	247
CoCu/NC	2.445	1.915	125	9	1.9	760	102	128	11	1.9	745.4	118.3
ZnRh/NC	2.583	2.003	137	12	1.6	906.4	9	134	9	2.2	720	162
ZnRu/NC	2.593	2.005	137	12	1.6	906.4	9	134	8	2.2	711	146
ZnIr/NC	2.579	1.996	137	12	1.6	906.4	9	136	9	2.2	880	190
ZnFe/NC	2.610	1.960	137	12	1.6	906.4	9	126	8	1.8	759.3	44
ZnMn/NC	2.640	1.978	137	12	1.6	906.4	9	137	7	1.5	717.4	-94
ZnNi/NC	2.593	1.957	137	12	1.6	906.4	9	125	10	1.9	736.7	156
ZnPd/NC	2.647	2.005	137	12	1.6	906.4	9	137	10	2.2	805	98.4
ZnPt/NC	2.634	1.997	137	12	1.6	906.4	9	139	10	2.2	870	247
ZnCu/NC	2.536	2.015	137	12	1.6	906.4	9	128	11	1.9	745.4	118.3
NiRh/NC	2.502	1.952	125	10	1.9	736.7	156	134	9	2.2	720	162
NiRu/NC	2.464	1.953	125	10	1.9	736.7	156	134	8	2.2	711	146
NiIr/NC	2.505	1.951	125	10	1.9	736.7	156	136	9	2.2	880	190
NiFe/NC	2.477	1.912	125	10	1.9	736.7	156	126	8	1.8	759.3	44
NiMn/NC	2.434	1.942	125	10	1.9	736.7	156	137	7	1.5	717.4	-94

NiPd/NC	2.659	1.940	125	10	1.9	736.7	156	137	10	2.2	805	98.4
NiPt/NC	2.634	1.942	125	10	1.9	736.7	156	139	10	2.2	870	247
NiCu/NC	2.492	1.917	125	10	1.9	736.7	156	128	11	1.9	745.4	118.3
PdRh/NC	2.528	1.994	137	10	2.2	805	98.4	134	9	2.2	720	162
PdRu/NC	2.505	2.002	137	10	2.2	805	98.4	134	8	2.2	711	146
PdIr/NC	2.529	1.995	137	10	2.2	805	98.4	136	9	2.2	880	190
PdFe/NC	2.509	1.963	137	10	2.2	805	98.4	126	8	1.8	759.3	44
PdMn/NC	2.376	1.934	137	10	2.2	805	98.4	137	7	1.5	717.4	-94
PdPt/NC	2.582	1.996	137	10	2.2	805	98.4	139	10	2.2	870	247
PdCu/NC	2.557	1.973	137	10	2.2	805	98.4	128	11	1.9	745.4	118.3
PtRh/NC	2.531	1.999	139	10	2.2	870	247	134	9	2.2	720	162
PtRu/NC	2.482	2.001	139	10	2.2	870	247	134	8	2.2	711	146
PtIr/NC	2.529	2.335	139	10	2.2	870	247	136	9	2.2	880	190
PtFe/NC	2.428	2.003	139	10	2.2	870	247	126	8	1.8	759.3	44
PtMn/NC	2.437	1.998	139	10	2.2	870	247	137	7	1.5	717.4	-94
PtCu/NC	2.546	1.965	139	10	2.2	870	247	128	11	1.9	745.4	118.3
CuRh/NC	2.500	1.964	128	11	1.9	745.4	118.3	134	9	2.2	720	162
CuRu/NC	2.539	1.961	128	11	1.9	745.4	118.3	134	8	2.2	711	146
CuIr/NC	2.499	1.963	128	11	1.9	745.4	118.3	136	9	2.2	880	190
CuFe/NC	2.484	1.924	128	11	1.9	745.4	118.3	126	8	1.8	759.3	44
CuMn/NC	2.498	1.954	128	11	1.9	745.4	118.3	137	7	1.5	717.4	-94
RhRu/NC	2.570	1.986	134	9	2.2	720	162	134	8	2.2	711	146
RhIr/NC	2.601	1.984	134	9	2.2	720	162	136	9	2.2	880	190
RhFe/NC	2.506	1.952	134	9	2.2	720	162	126	8	1.8	759.3	44
RhMn/NC	2.448	1.983	134	9	2.2	720	162	137	7	1.5	717.4	-94
RuIr/NC	2.569	1.985	134	8	2.2	711	146	136	9	2.2	880	190
RuFe/NC	2.305	1.985	134	8	2.2	711	146	126	8	1.8	759.3	44
RuMn/NC	2.388	1.992	134	8	2.2	711	146	137	7	1.5	717.4	-94
IrFe/NC	2.496	1.953	136	9	2.2	880	190	126	8	1.8	759.3	44
IrMn/NC	2.443	1.984	136	9	2.2	880	190	137	7	1.5	717.4	-94
FeMn/NC	2.489	1.931	126	8	1.8	759.3	44	137	7	1.5	717.4	-94

Table S8. The M-M distance in homonuclear BACs and the corresponding values in bulk metals (in Å).

Metal	Distance (bulk)	Distance (BACs)	Metal	Distance (bulk)	Distance (BACs)
Mn	2.705/2.611	2.495	Ru	2.706/2.650	2.478
Fe	2.866/2.482	2.397	Rh	3.804/2.690	2.590
Co	2.507/2.497	2.532	Pd	3.891/2.751	2.599
Ni	3.524/2.492	2.685	Ir	3.839/2.715	2.628
Cu	3.615/2.556	2.515	Pt	3.924/2.775	2.579
Zn	2.913/2.665	2.629			

Note: The two values in bulk phase denote the longest and shortest adjacent M-M distance, respectively.