ESI:

Hierarchical Cu₂S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors

Ze Yuan,[‡]^a Haiyan Wang,[‡]^a Junling Shen,^a Pengcheng Ye,^a Jiqiang Ning,^b Yijun Zhong,^{*a} and Yong Hu^{*a}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China. E-mail:
yonghu@zjnu.edu.cn; yonghuzjnu@163.com; yjzhong@zjnu.edu.cn
^bVacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and

Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

‡ These authors contributed equally to this work.

Fig. S1 XRD patterns of the as-prepared Cu(OH)₂ NRAs, Cu₂S NTAs and Cu₂S@NiCo-LDH DSNAs.

Fig. S2 FE-SEM images of the as-prepared NiCo-LDH NSs.

Fig. S3 (a) N_2 adsorption-desorption isotherms, and (b) pore size distribution curves of the $Cu_2S@NiCo-LDH DSNAs$, NiCo-LDH NSs and $Cu_2S NTAs$.

Fig. S4 XRD pattern of the as-prepared NiCo-LDH NSs.

Fig. S5 Raman spectra of the Cu₂S@NiCo-LDH DSNAs, NiCo-LDH NSs and Cu₂S NTAs.

Fig. S6 (a) EDX spectrum and (b) atomic percentage of the as-prepared $Cu_2S@NiCo-LDH$ DSNAs sample.

Fig. S7 The high-resolution XPS of (a) Ni 2p and (b) Co 2p of $Cu_2S@NiCo-LDH$ DSNAs at the original state and with charge/discharge states.

Fig. S8 CV curves of the as-prepared (a) Cu_2S NTAs, (c) NiCo-LDH NSs, (e) $Cu_2S@NiCo-LDH$ DSNAs at various scan rates, GCD curves of (b) Cu_2S NTAs, (d) NiCo-LDH NSs, (f) $Cu_2S@NiCo-LDH$ DSNAs at various current densities.

Fig. S9 The specific capacities of the $Cu_2S@NiCo-LDH$ DSNAs at different current densities.

Fig. S10 (a, b) FE-SEM images of the Cu $_2$ S@NiCo-LDH DSNAs after cyclic stability test.

Fig. S11 TEM image of the $Cu_2S@NiCo-LDH$ DSNAs after cyclic stability test.

Fig. S12 XPS spectra of the Cu₂S@NiCo-LDH DSNAs after cyclic stability test. (a) Survey spectra and the high-resolution XPS of (b) Cu 2p (inset shows the Auger Cu LMM lines), (c) Ni 2p, (d) Co2p, (e) O 1s and (f) S 2p.

Fig. S13 XRD pattern of the Cu₂S@NiCo-LDH DSNAs after cyclic stability test.

Fig. S14 Electrochemical performances of the Cu(OH)₂ NRAs, Cu₂S NTAs, Cu(OH)₂@ NiCo-LDH and Cu₂S@NiCo-LDH DSNAs. (a) CV curves at 10 mV s⁻¹. (b) GCD curves at 10 mA cm⁻².
(c) Specific capacities at different current densities.

Fig. S15 CV curves of the as-prepared (a) Cu(OH)₂ NRAs, (c) Cu(OH)₂@ NiCo-LDH, at various scan rates, GCD curves of (b) Cu₂S NTAs, (d) Cu₂S@NiCo-LDH DSNAs, at various current densities.

Fig. S16 Specific capacitances of Cu₂S@NiCo-LDH-1 DSNAs, Cu₂S@NiCo-LDH DSNAs and Cu₂S@NiCo-LDH-3 DSNAs at different current densities.

Fig. S17 (a) CV curves and (b) GCD curves of the as-prepared $Cu_2S@NiCo-LDH-3$ DSNAs, (c) CV curves and (d) GCD curves of the as-prepared $Cu_2S@NiCo-LDH-1$ DSNAs.

Fig. S18 (a) The CV curves of the Cu_2S NTAs electrode at different scan rates. (b) The plot of log(i) versus log(v). (c) Separation of the diffusion and capacitive-controlled currents of the Cu_2S NTAs electrode at a scan rate of 10 mV s⁻¹. (d) Relative contribution of the diffusion and capacitive-controlled charge storage at different scan rates.

Fig. S19 (a) The CV curves of the NiCo-LDH NSs electrode at different scan rates. (b) The plot of log(i) versus log(v). (c) Separation of the diffusion and capacitive-controlled currents of the NiCo-LDH NSs electrode at a scan rate of 10 mV s⁻¹. (d) Relative contribution of the diffusion and capacitive-controlled charge storage at different scan rates.

Fig. S20 The FE-SEM images of the as-prepared (a, b) ZIF-8 and (c, d) NPC.

Fig. S21 Structural characterization of the as-prepared NPC: (a) Raman; (b) XRD pattern; (c) N_2 adsorption isotherms and (d) pore size distribution.

Fig. S22 (a) CV curves and (b) GCD curves of the as-prepared NPC.

Fig. S23 CV curves of the Cu₂S@NiCo-LDH DSNAs and NPC at 10 mV s⁻¹.

Fig. S24 EIS spectrum of the Cu₂S@NiCo-LDH DSNAs//NPC HSC device with the insets of the EIS spectrum in high-frequency region and the simulated circuit diagram, respectively.

Electrode material	Electrolyte	Current density (mA cm ⁻²)	C _a (F cm ⁻²)	Ref.
Cu ₂ S@NiCo-LDH DSNAs	6 M KOH	4	20.40	This work
Cu ₃ N@CoFe-LDH	2 M KOH	1	3.08	S 1
Co(OH) ₂ /HNNF	2 M KOH	5	3.17	S2
Zn–Ni–Co TOH	1 M KOH	3	2.14	S3
CuO@CoFe-LDH NWAs	1 M KOH	2.5	0.87	S4
NC LDH NFAs@NSs/Ni	1 M KOH	2	1.46	S5
ZnCo ₂ O ₄ @Ni _x Co _{2x} (OH) _{6x}	2 M KOH	5	3.35	S6
CoNiO2 NWAs@Ni(OH)2 NSs/CNTF	3 M KOH	1	6.06	S7

Table S1 Comparative areal capacity values (measured in three-electrode system) of thepreviously reported transition metal hydroxides-based electrodes with our $Cu_2S@NiCo-LDH$ DSNAs.

Table S2 Fitting results of the EIS data

Ū.								_
Sample	R _s	R _{ct}	CPE-P	CPE-T	W-R	W-T	W-P	
	(Ω)	(Ω)	(mF)	(mF)	(Ω)	(Ω)	(Ω)	_
Cu ₂ S NTAs	0.80	0.02	0.66	1.05	0.60	0.80	0.49	-
NiCo-LDH NSs	0.64	0.05	0.67	0.31	1.96	2.79	0.38	
Cu ₂ S@NiCo-LDH DSNAs	0.61	0.01	1.18	0.01	0.48	1.30	0.40	

Electrode material	C _a (F cm ⁻²)	E _a (mW h cm ⁻²)	P _a (mW cm ⁻²)	Ref.
Cu ₂ S@NiCo-LDH DSNAs	4.2	1.67	4.25	This work
CoMoO4@Co(OH)2/CT//PAC	0.5	0.17	1.50	S8
NC LDH NSs@Ag@CC//AC	0.2	0.08	0.80	S 9
NiCo ₂ O ₄ @Co _{0.33} Ni _{0.67} (OH) ₂ //CMK-3-ASC	0.9	0.32	4.00	S10
ZNCO@Ni(OH)2//VN@C	0.6	0.20	2.40	S11
NC LDH NFAs@NSs/Ni//AC@CF	1.2	0.40	2.40	S5
Ni(OH)2-Cu//RGO	2.5	0.95	2.01	S12
NiCo ₂ S ₄ //C	0.5	0.12	0.80	S13
Cu ₃ N@CoFe-LDH//AC	1.2	0.42	1.70	S 1

Table S3 Comparative areal capacitances, areal energy and power densities of recently reported

 HSCs with our HSCs.

Reference

- 1. X. Zhou, X. Li, D. Chen, D. Zhao and X. Huang, J. Mater. Chem. A, 2018, 6, 24603-24613.
- 2. Z. Yu, Z. Cheng, X. Wang, S. X. Dou and X. Kong, J. Mater. Chem. A, 2017, 5, 7968-7978.
- Z. Huang, F. Sun, M. Batmunkh, W. Li, H. Li, Y. Sun, Q. Zhao, X. Liu and T. Ma, J. Mater. Chem. A, 2019, 7, 11826-11835.
- Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. Evans and X. Duan, *Nano Energy*, 2016, 20, 294-304.
- 5. G. Nagaraju, S. Sekhar, L. Bharat and J. Yu, ACS Nano, 2017, 11, 10860-10874.
- 6. W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha and E. Xie, J. Mater. Chem. A, 2016, 4, 173-182.
- Q. Li, Q. Zhang, J. Sun, C. Liu, J. Guo, B. He, Z. Zhou, P. Man, C. Li, L. Xie and Y. Yao, *Adv. Sci.*, 2019, 6, 1801379.
- G. Veerasubramani, A. Chandrasekhar, S. M. S. P, Y. Mok and S. Kim, *J. Mater. Chem. A*, 2017, 5, 11100-11113.
- 9. S. Sekhar, G. Nagaraju and J. Yu, Nano Energy, 2017, 36, 58-67.
- K. Xu, R. Zou, W. Li, Q. Liu, X. Liu, L. An and J. Hu, J. Mater. Chem. A, 2014, 2, 10090-10097.
- Q. Zhang, W. Xu, J. Sun, Z. Pan, J. Zhao, X. Wang, J. Zhang, P. Man, J. Guo, Z. Zhou, B. He,
 Z. Zhang, Q. Li, Y. Zhang, L. Xu and Y. Yao, *Nano Lett.*, 2017, **17**, 7552-7560.
- D. Shi, L. Zhang, X. Yin, T. J. Huang and H. Gong, J. Mater. Chem. A, 2016, 4, 12144-12151.
- 13. W. Kong, C. Lu, W. Zhang, J. Pu and Z. Wang, J. Mater. Chem. A, 2015, 3, 12452-12460.