Supporting Information

General synthesis of single atom electrocatalysts via a facile

condensation-carbonization process

Weiming Chen, Xuanli Luo, Thomas J A Slater, Yongfang Zhou, Sanliang Ling, Rui Bao, Jesum Alves Fernandes, Jianshe Wang and Yi Shen*

Mr. W. Chen, Miss Y. Zhou and Dr Y. Shen School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China. Email: feyshen@scut.edu.cn (Y. S.)

Dr Y. Shen, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510641, China

Dr X. Luo and Dr S. Ling Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

Dr T. Slater, Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom

Dr R. Bao, Kunming University of Science and Technology, Kunming, xxx, China.

Dr J. Alves Fernandes, School of Chemistry, University of Nottingham, Nottingham, UK

Dr J. Wang, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

Table of Contents

Experimer	ntal section				S3-4
Table	S1-2	XPS	and	ICP-AES	analysis
results					
Table S3 C	Contents of N s	species			S6
Table		S4	EX	AFS	fitting
result				S 7	
Table S5 C	Comparison of	glycerol electro	-oxidation act	ivity	
Table S6 C	Comparison of	OER activity			
Table S7 C	Comparison of	overall efficient	cy		S10
Fig.	S1	FTIR	spect	tra o	f the
samples					
Fig. S2 Str	ucture Charac	terization of Pt/	NCNSs		
Fig. S3 XR	D spectra of th	ne samples			
Fig. S4 Rai	man spectra of	f the samples			S14
Fig. S5-12	Raman spectr	a of the samples	5		
Fig. S13-18	8 XPS of the s	amples			
Fig. S19-21	1 XAFS of the	e samples			
Fig. S22 C	V of glycerol	oxidation over t	he Pd/NCNSs	\$	
Fig. S23 A	dditional two	adsorption conf	igurations of A	Au/NCNSs	
Fig. S24 C	V of glycerol	oxidation over t	he Au/NCNS	s samples	
Fig. S25 C	ycle activity o	f Au/NCNSs			S36
Fig. S26-28	8 LSV and ove	erpotential of O	ER over the N	li/NCNSs	S36-38
Fig. S29-3	1 OER perfor	mance (TOF va	alues and chro	onoamperometri	c curves) of the
samples					
Fig. S32 H	AADF-STEM	l images of spen	nt Co/NCNSs.		
Fig. S33 H	AADF-STEM	l images of spen	nt Au/NCNSs.		
Fig. S34-35	5 C _{dl} value of	the samples			
Fig. S36-39	9 HER perform	nance (LSV, ov	verpotentials, 7	Tafel slopes and	TOF values) of
the samples	S				
Fig. S40 Di	igital photos o	f solar panel po	wered set-up e	electrolysis	

Fig. S41 Digital photo of a 2.0 V solar panel	
References	

Experimental section

Materials

Furfural ($C_5H_4O_2$) was purchased from McLean Biochemical Technology Co. LTD. (Shanghai, China), Cyanamide (CH₂N₂, 50 wt% in aqueous) was purchased from Aladdin Co. LTD. (Shanghai, China), Hydrochloric acid was provided by Nanjing Chemical Reagent Co. LTD. (Nanjing, China), Ferric chloride hexahydrate (FeCl₃·6H₂O), Cobalt chloride hexahydrate (CoCl₂·6H₂O) and Nickel chloride hexahydrate (NiCl₂·6H₂O) were provided by Guangzhou Chemical Reagent Co. LTD. (Guangzhou, China), Tianjin Kemeiou Chemical Reagent Co. LTD. (Tianjin, China) and Damao Chemical Reagent Co. LTD. (Tianjin, China), respectively. Chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O), Tetrachlorogold trihydrate (AuCl₄·3H₂O), Palladium chloride (PdCl₂) was purchased from Sigma-Aldrich (Shanghai, China). Isopropanol and ethylene glycol were provided by the Qiangsheng Chemical Reagent Co. Ltd. (Tianjin, China), respectively. All the chemicals were of analytic grade and were used as received without further purification.

Theoretical density of single platinum atom in the Pt/NCNSs sample (CPt)

The theoretical density of platinum atom in the Pt/NCNSs sample was calculated by:

$$C_{Pt} = \frac{N}{V}$$

Where V is the volume of Pt/NCNSs sample, and N is the number of single platinum atom in a sample volume of V.

Based on following equations, C_{Pt} (nm⁻³) can be calculated:

$$C_{P_{t}} = \frac{\text{Pt wt}\% \times \rho (\text{g cm}^{-3})}{M_{P_{t}} (\text{g mol}^{-1})} \times N_{A} (\text{mol}^{-1}) \times \left(\frac{1 (\text{cm})}{10^{7} (\text{nm})}\right)^{3} = \frac{\text{Pt wt}\% \times \rho (\text{g cm}^{-3})}{0.324 (\text{g})} \times \frac{\text{cm}^{3}}{\text{nm}^{3}}$$
$$= \frac{1.73 \times 10^{-2} \times 2.0 (\text{g cm}^{-3})}{0.324 (\text{g})} \times \frac{\text{cm}^{3}}{\text{nm}^{3}} = 0.1068 \text{ nm}^{-3} \approx 0.11 \text{ nm}^{-3}$$

Where Pt wt% is the loading of platinum in Pt/NCNSs, ρ is the density of the Pt/NCNSs sample, and M_{Pt} is the molar mass of platinum. Since the major content of the sample is carbon (over 95 wt%), the density of the Pt/NCNSs can be equivalent to that of carbon

material. According to Raman and XRD results, both graphitized carbon (2.25 g cm⁻³) and amorphous carbon (1.80 g cm⁻³) were present in the sample. Therefore, the density of the Pt/NCNSs sample was estimated as 2.0 g cm⁻³.

Energy efficiency of solar-to-hydrogen (η)

Energy Efficiency of solar-to-hydrogen was calculated by:

$$\eta$$
 (%) = $\frac{E_h}{E_0} \times 100\%$

Where E_h is the energy of the hydrogen produced by electrolysis, and E_0 is the overall solar energy input on the solar panel.

Based on following equations, E_h can be calculated:

$$H_{2}(g) + \frac{1}{2}O_{2}(g) = H_{2}O(1), \Delta H = -285.8 \text{ KJ mol}^{-1}$$

$$E_{h} = \frac{V_{h}(mL)}{22400 (mL \text{ mol}^{-1})} \times \frac{273 (K)}{T (K)} \times (-\Delta H) (kJ \text{ mol}^{-1})$$

$$= \frac{10.1 (mL)}{22400 (mL \text{ mol}^{-1})} \times \frac{273 (K)}{303 (K)} \times 285.8 (kJ \text{ mol}^{-1}) = 0.116 \text{ kJ} = 116 \text{ J}$$

Where V_h is the volume of hydrogen obtained from anode, and T is the environment temperature.

$$E_0 = S (m^2) \times \int_0^t P(t) (W m^{-2}) \bullet dt (s) = 0.04^2 (m^2) \times \int_0^{2130} P(t) (W m^{-2}) \bullet dt (s)$$
$$= 0.04^2 (m^2) \times E_t (J m^{-2}) = 0.04^2 (m^2) \times 823300 (J m^{-2}) = 1317 J$$

Where S is the area of solar panel, P(t) is the power density of the sunlight in real time, and E_t is the energy density of sunlight during the electrolysis process

$$\eta$$
 (%) = $\frac{E_h}{E_0} \times 100\% = \frac{116 \text{ (J)}}{1317 \text{ (J)}} \times 100\% = 8.8\%$

In the overall water splitting system, Ni/NCNSs and Co/NCNSs was utilized as anodic and cathodic electrocatalysts, the area of both anodic and cathodic was 10×10 mm, and the loading of the electrocatalysts was 0.128 mg cm⁻². The electrolyte was 1 M KOH and a 2.0 V solar panel (40×40 mm) was utilized as power supply (**Fig. S41**, ESI[†]). The power density of the sunlight was recorded at intervals of 5 seconds by a power meter, and hydrogen and oxygen were collected by a device shown in Fig. 4h and S37. The environment temperature (T) was 303 K. After 2130 seconds, 5.2 mL of oxygen and 10.1 mL (V_h) of hydrogen were obtained from the cathode and anode, respectively. The power density of the sunlight was shown in inset of **Fig. 5e**.

The TOF values of the catalysts were calculated based on Li's work.¹

Number	Sample	C (wt%)	N (wt%)	Metal (wt%)	O (wt%)
1	Fe/NCNSs	91.38	1.74	1.52	5.35
2	Co/NCNSs	85.70	2.96	1.25	10.08
3	Ni/NCNSs	83.94	2.40	2.35	11.31
4	Ni/NCNSs-800	81.12	3.61	1.00	15.28
5	Ni/NCNSs-1000	91.19	1.98	1.72	5.11
6	Ni/NCNSs-1100	83.99	0.74	0.04	15.23
7	Pt/NCNSs	94.96	3.31	1.73	
8	Au/NCNSs	78.21	7.86	2.28	10.90
9	Pd/NCNSs	85.69	5.67	0.93	7.70

Table S1 XPS analysis results of the samples

Table S2 Metal loadings in the resulting catalysts

Sample	Metal loading from XPS results (wt.%)	Metal loading from ICP-AES results (wt.%)
Pt/NCNSs	1.73	1.79
Au/NCNSs	2.28	2.41
Pd/NCNSs	0.93	1.66
Fe/NCNSs	1.52	1.72
Co/NCNSs	1.25	1.62

Ni/NCNSs	2.35	2.33

Catalysts	Pyridinic- N (%)	M-N _x (%)	Pyrrolic- N (%)	Graphitic- N (%)	Oxidized- N (%)	Total N- content (wt %)
Ni/NCNSs-800	30.0	6.6	20.5	28.8	14.1	3.61
Ni/NCNSs	22.2	16.4	18.0	30.1	13.2	2.40
Ni/NCNSs-1000	21.7	16.6	20.1	31.7	10.0	1.98
Ni/NCNSs-1100	22.5	15.7	11.2	24.0	26.7	0.74
Co/NCNSs	20.1	10.7	22.9	23.5	22.7	2.96
Fe/NCNSs	18.3	9.6	36.6	20.7	14.8	1.74
Pt/NCNSs	25.1	15.7	22.0	23.5	13.7	3.31
Au/NCNSs	29.6	15.6	17.7	19.1	18.0	7.86
Pd/NCNSs	22.4	14.8	14.4	33.2	15.2	5.67

 Table S3 Contents of N species of the samples based on the N 1s spectra.

		<u>.</u>						
S_0^2	Sample	Path	^a C.N.	b R (Å)	$^{c}\sigma^{2}\times10^{-3}$ (Å ²)	$^{d}\Delta E_{0} (eV)$	R factor	
		Fe-Fe	8*	2.48±0.01	5.2±0.6	7.4±1.1		
	Fe foil	Fe-Fe	6*	2.84±0.01	6.8±1.4	5.7±2.2	0.001	
0.78		Fe-N	3.7±0.8	2.17±0.02	13.9±2.5	5.2±1.6		
	Fe/NCNSs	Fe-O	2.2±0.6	2.00±0.04	3.0+1.2	-8.9±5.3	0.006	
		Fe-Fe	1.2±0.2	2.74±0.01	9.2±3.6	-5.7±5.3		
0.80	Ni foil	Ni-Ni	12*	2.48±0.01	6.1±0.2	6.8±-0.4	0.001	
	Ni/NCNSs	Ni-N	4.3±1.8	1.87±0.03	16.2±4.6	-15.2±5.2	0.015	
	Pd foil	Pd-Pd	12*	2.74±0.01	5.2±0.3	-5.5±0.5	0.002	
0.82		Pd-N	2.9±1.1	2.13±0.04	11.7±8.9	7.0±3.4		
0.02	Pd/NCNSs	Pd-Pd	4.0±1.4	2.83±0.01	9.2±2.6	-5.3±2.4	0.014	
	Pt foil	Pt-Pt	12*	2.76±0.01	4.7±0.2	8.8±0.4	0.001	
0.84	Pt/NCNSs	Pt-N	3.0±0.6	2.00±0.02	6.0±2.4	7.5±2.6	0.019	

Table S4 Structural parameters obtained from the EXAFS fitting analysis

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. * the experimental EXAFS fit of metal foil by fixing CN as the known crystallographic value.

The obtained XAFS data was processed in Athena (version 0.9.25) for background, pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was carried out in Artemis (version 0.9.25). The k³ weighting, k-range of 3 - 12 Å⁻¹ and R range of 1 - ~3 Å were used for the fitting. The four parameters, coordination number, bond length, Debye-Waller factor and E₀ shift (CN, R, σ^2 , ΔE_0) were fitted without anyone was fixed, constrained, or correlated.

References	Catalyst	Loading density (mg _{cat} cm ⁻²)	Activity mA mg _{noble meatl} ⁻¹	Electrolyte	
	Pt-NCNSs	0.113	5300		
Our work	Au-NCNSs	0.113	3640	0.5 M KOH +	
	Pd-NCNSs	0.113	730	0.5 M Glycerol	
	Pd-CB	1.0	900		
ACS Catal., 2015, 5,	Pd-CNx	1.0	1050	0.5 M NaOH +	
31/4.	Pd-CNx/G	1.0	1100	0.5 M Glycerol	
Energy Environ. Sci., 2015, 8, 2910.	Pd ₅₅ Pt ₃₀	0.025	1800	1 M KOH + 0.1 M Glycerol	
Energy Environ. Sci., 2016, 9, 3097.	Pd ₆₂ Au ₂₁ Ni ₁₇	0.014	3300	1 M KOH + 0.1 M Glycerol	
J. Am. Chem. Soc.,	Pd ₄ Bi	0.2	700	1 M KOH +	
2014, 136, 3937.	Pd ₆ Bi	0.2	550	0.1 M Glycerol	
<i>Green Chem.</i> , 2015, 18,	Pt/Ag@C	0.86	1080	1 M KOH +	
386.	Pt/MWCNT	0.86	240	0.1 M Glycerol	
Adv. Mater., 2019, 31,	Pt-in-GN	1	600	1 M KOH +	
1804763.	Pt-in-VGCC	0.05 (Pt)	1280	0.1 M Glycerol	
J. Mater. Chem. A, 2017, 5, 15932.	Au ₁ Cu ₁	0.06 (Au)	2260	1 M KOH + 1 M Glycerol	
Electrochem. Commun.,	PtAgNTs	0.1 (Pt)	1600	0.5 M NaOH +	
2014, 46, 36.	PtNTs	0.1 (Pt)	1050	0.5 M Glycerol	
Applied Catal. B: Environ., 2015, 176-177, 429.	Pd ₁ Sn ₁	0.2	1050	1 M KOH + 0.1 M Glycerol	
Nanoscale, 2018, 10, 16468.	Pt ₃ FeNWs	0.03 (Pt)	2000	1 M KOH + 1 M Glycerol	
ACS Appl. Mater. Interfaces, 2018, 10, 12659.	Pd ₂ Pb NCs	0.1	2220	1 M KOH + 1 M Glycerol	
J. Mater. Chem. A 2015, 3, 15920.	Pd ₆₃ Ag ₃₇ nanocorals	0.085	1600	1 M KOH + 0.5 M Glycerol	
<i>Chem. Eng. J.</i> 2017, 38, 419.	Pd-NiO _x -P/C	0.2	380	0.1 M KOH + 0.5 M Glycerol	

 Table S5 Comparison on glycerol electro-oxidation activity of the electrocatalysts.

References	Catalyst	Loading density (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (V)	Electrolyte
This work	Ni/NCNSs Co/NCNSs	Ni/NCNSs 0.128 mg cm ⁻² Co/NCNSs 0.128 mg cm ⁻²		1.0 M KOH
Nat. Catal., 2018, 1, 63	Ni–NHGF	0.275 mg cm ⁻²	1.56	1.0 M KOH
Angew. Chem. Int. Ed., 2018, 57, 1856	FeCo-N _x -CN	0.10 mg cm ⁻²	1.60	1.0 M KOH
J. Am. Chem. Soc., 2017, 139, 3336	Co-C ₃ N ₄ /CNT	2.0 mg cm ⁻²	1.61	1.0 M KOH
Nat. Commun., 2019, 10, 1392	S NiN _x -PC/EG	0.15 mg cm ⁻²	1.51	1.0 M KOH
<i>Sci. Adv.</i> , 2016, 2, e1501122	N-GRW	0.50 mg cm ⁻²	1.59	1.0 M KOH
Nat. Energy, 2016, 1, 15006	NCNTFs	0.20 mg cm ⁻²	1.60	1.0 M KOH
<i>Adv. Mater.</i> , 2017, 29, 1604480	Co–N _x P- GC/FEG	0.12 mg cm ⁻²	1.55	1.0 M KOH
Angew. Chem. Int. Ed., 2017, 56, 610	S, N-Fe/N/C- CNT	0.60 mg cm ⁻²	1.60	0.1 M KOH
Angew. Chem. Int. Ed., 2018, 57, 3514	CoSSPIL/CNT	0.05 mg cm ⁻²	1.64	0.1 M KOH
Adv. Funct. Mater., 2015, 25, 872	N/Co-doped PCP//NRGO	0.714 mg cm ⁻²	1.66	0.1 M KOH
Adv. Energy Mater., 2015, 5, 1401660	Ni@NC	0.40 mg cm ⁻²	1.62	0.1 M KOH
J. Am. Chem. Soc., 2018, 140, 2610.	CoP/NCNHP	0.628 mg cm ⁻²	1.54	1.0 M KOH
J. Am. Chem. Soc., 2017, 139, 3336.	Co-g- C ₃ N ₄ /CNT	0.196 mg cm ⁻²	1.61	1.0 M KOH
Angew. Chem. Int. Ed., 2017, 129, 3955.	NiCoP/C nanoboxes	0.15 mg cm ⁻²	1.56	1.0 M KOH

 Table S6 Comparison on OER activity of the electrocatalysts.

References	Electrochemical cell	Solar cell	Efficienc	Electrolyte
This work	Ni/NCNSs // Co/NCNSs	Silicon	8.8%	1 М КОН
J. Am. Chem. Soc. 2015, 137, 14305.	CoMnO@CN (both sides)	A commercial planar Si solar cell module (Voc = 2.36)	8.0%	1 М КОН
Adv. Funct. Mater., 2016, 26, 8555	CuCoO-NW (both sides)	Silicon	4.5%	1 M KOH
Adv. Mater., 2016, 28, 3366	Ni // Pt	PBDTTPD:PCB M/PEDOT:PSS 3jn	6.1%	1 M NaOH
Proc. Natl. Acad. Sci. U.S.A., 2014, 111, 14057	NiB _i // NiMoZn	c-Si 4p	10.0%	0.5 M KBi, (pH 9.2)
Science, 2014, 345, 1593	NiFe LDH // NiFe LDH	Lead halide (CH ₃ NH ₃ PbI ₃) perovskite 2p	12.3%	1 M NaOH
Energy Environ. Sci., 2013, 6, 3676	Pt // Pt	CuInGaSe ₂ 3p	10.5%	3 M H ₂ SO ₄ (pH 1.0)
Science, 2011, 334, 645	Co // NiMoZn	3jn-a-Si (wired device)	4.7%	0.5 M KBi (pH 9.2)

Table S7 Comparison of overall solar-to-hydrogen conversion efficiency in recent

reports.

Fig. S1 (a) FTIR spectra of the samples and TEM images of (b) Fe/NCNSs, (c) Pt/NCNSs and (d) Co/NCNSs.

Fig. S2 Structural characterization. (a) XRD patters and (b) Raman spectra of Pt/NCNSs and NCNSs, (c) N₂ adsorption-desorption isotherms of Pt/NCNSs, (d) XPS survey spectrum, (e) N 1s spectrum and (f) Pt 4f spectrum of Pt/NCNSs.

Fig. S5 (a) N₂ adsorption-desorption isotherm of the NCNSs and (b) corresponding pore size distribution.

Fig. S6 (a) N₂ adsorption-desorption isotherm of the Au/NCNSs and (b) corresponding pore size distribution.

Fig. S7 (a) N₂ adsorption-desorption isotherm of the Pd/NCNSs and (b) corresponding pore size distribution.

Fig. S8 (a) N₂ adsorption-desorption isotherm of the Co/NCNSs and (b) corresponding pore size distribution.

Fig. S9 (a) N₂ adsorption-desorption isotherm of the Fe/NCNSs and (b) corresponding pore size distribution.

Fig. S10 (a) N₂ adsorption-desorption isotherm of the Ni/NCNSs and (b) corresponding pore size distribution.

Fig. S11 (a) N₂ adsorption-desorption isotherm of the Ni/NCNSs-1000 and (b) corresponding pore size distribution.

Fig. S12 (a) N₂ adsorption-desorption isotherm of the Ni/NCNSs-800 and (b) corresponding pore size distribution.

Fig. S13 (a) Survey, (b) C 1s, (c) N 1s and (d) Au 4f spectra of the Au/NCNSs.

Fig. S15 (a) Survey, (b) C 1s, (c) N 1s and (d) Co 2p spectra of the Co/NCNSs.

Fig. S16 (a) Survey, (b) C 1s, (c) N 1s and (d) Fe 2p spectra of the Fe/NCNSs.

Fig. S17 (a) Survey, (b) C 1s, (c) N 1s and (d) Ni 2p spectra of the Ni/NCNSs.

Fig. S18 N 1s spectra of the Ni/NCNSs samples prepared at (a) 800, (b) 900, (c) 1000 and (d) 1100 °C

Fig. S19 Synchrotron XAFS measurement of Ni/NCNSs. (a) XANES spectra, (b) k^3 -weighted FT-EXAFS of Ni/NCNSs and references at Ni K-edge, (c) WT for the EXAFS signal of Ni/NCNSs and references, and (d, e) Corresponding EXAFS fitting curves in k and R space, respectively, inset displays the atomic structure model.

Fig. S20 Synchrotron XAFS measurement of Pd/NCNSs. (a) XANES spectra, (b) k^2 -weighted FT-EXAFS of Pd/NCNSs and references at Pd K-edge, (c) WT for the EXAFS signal of Pd/NCNSs and references, and (d, e) Corresponding EXAFS fitting curves in k and R space, respectively, inset displays the atomic structure model.

Fig. S21 Synchrotron XAFS measurement of Fe/NCNSs. (a) XANES spectra, (b) k^3 -weighted FT-EXAFS of Fe/NCNSs and references at Fe K-edge, (c) WT for the EXAFS signal of Fe/NCNSs and references, and (d, e) Corresponding EXAFS fitting curves in k and R space, respectively, inset displays the atomic structure model.

Pd/NCNSs catalysts.

Fig. S23 Additional two adsorption configurations of glycerol molecules on single Au atom catalyst.

Fig. S24 Cyclic voltammetry curves of glycerol oxidation over the Au/NCNSs prepared with (a) varying pyrolysis temperatures and (b) varying concentrations of Au precursor.

Fig. S25 Cyclic voltammetry curves of glycerol oxidation over the Au/NCNSs before and after 500 cycles.

Fig. S26 (a) Polarization curves and (b) overpotentials at 10 mA cm⁻² of Ni/NCNSs prepared with varying pyrolysis temperatures. Catalysts were prepared with a cyanamide/furfural ratio of 1:1 and a metal loading (metal in feedstock) of 0.5 wt%.

Fig. S27 (a) Polarization curves and (b) overpotentials at 10 mA cm⁻² of Ni/NCNSs with varying concentrations of nitrogen precursor in the feedstock. Catalysts were prepared with a pyrolysis temperature of 900°C and a metal loading (metal in feedstock) of 0.5 wt%

Fig. S28 (a) Polarization curves and (b) overpotentials at 10 mA cm⁻² of Ni/NCNSs with varying concentrations of metal precursor in the feedstock. Catalysts were prepared with a cyanamide/furfural ratio of 1:1 and a pyrolysis temperature of 900°C.

Fig. S30 chronoamperometric curves of the NCNSs, Fe/NCNSs, Co/NCNSs and Ni/NCNSs recorded at varying potential.

Fig. S31 chronoamperometric curves of the Ni/NCNSs at potentials of 360 and 320 mV

Fig. S32 Co/NCNSs sample before and after a 12 h chronoamperometric measurements. (a) HAADF-STEM image of fresh Co/NCNSs sample. (b)
Chronoamperometric curves of Co/NCNSs at an overpotential of 420 mV, the nafion solution was not added during electrode preparation. (c-h) HAADF-STEM images of spent Co/NCNSs sample, the single cobalt atoms are highlight by red cycles.

Fig. S33 HAADF-STEM images of Au/NCNSs sample after 1000 cycles for glycerol electro-oxidation.

Fig. S34 Cyclic voltammetry curves of (a) NCNSs, (b) Fe/NCNSs, (c) Ni/NCNSs and (d) Co/NCNSs with scan rates of 5 (Black line), 10 (Red line), 20 (Blue), 40 (Magenta), 60 (Olive line), 80 (Navy line) and 100 mV s⁻¹ (Violet line)

Fig. S36 HER polarization curves recorded in a solution of 1 M KOH with a scan rate of 2 mV s-1,

Fig. S37 Comparison on overpotentials at a HER current density of 10 mA cm⁻²

Fig. S40 digital photos of a solar panel powered set-up (a) before and (b) after electrolysis for 2130 seconds, respectively

Fig. S41 Digital photo of a 2.0 V solar panel. The effective area of the solar panel is 40×40 mm.

References

[1] Y.R. Xue, B.L. Huang, Y.P. Yi, Y. Guo, Z.C. Zuo, Y.J. Li, Z.Y. Jia, H.B. Liu, Y.L. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. *Nat. Commun.* **2018**, *9*, 1460.