Recent advances in layered Ln$_2$NiO$_{4+\delta}$ nickelates: fundamentals and prospects for their applications in protonic ceramic fuel and electrolysis cells

Artem P. Tarutin a,h,i, Julia G. Lyagaeva a,h,i, Dmitry A. Medvedev a,h,i,*, Lei Bi c,*, Aleksey A. Yaremchenko d,*

a Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Yekaterinburg 620137, Russia

b Ural Federal University, Yekaterinburg 620002, Russia

c Department of Environmental Science and Engineering, School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China

d CICECO – Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

*Corresponding authors, e-mails:
dmitrymedv@mail.ru (Dmitry Medvedev),
lei.bi@usc.edu.cn (Lei Bi),
ayaremchenko@ua.pt (Aleksey Yaremchenko)

This file contains:
Figures: 5
Figure S1. Relationships between compositions of nickelate materials with their oxygen-ionic transport features: oxygen-ionic conductivity of the A-site doped nickelates measured at 900 °C (a), 800 °C (b) and 700 °C (c); oxygen-ionic conductivity of the B-site doped lanthanum nickelates (d) and praseodymium nickelates (e); ionic transference number (f) and activation energy values (g) of ionic-conductivity for the basic and doped nickelates. These data were extracted from Table 2.
Figure S2. Oxygen surface exchange and diffusion coefficient values as well as the corresponding apparent activation energies for Ln$_2$NiO$_{4+δ}$-based compounds. These data were presented on the basis of Table 3.
Figure S3. Concentration dependences of average thermal expansion coefficients for some undoped and A-site doped La$_2$NiO$_{4+\delta}$ (a), Nd$_2$NiO$_{4+\delta}$ (b), Pr$_2$NiO$_{4+\delta}$ (c) as well as for B-site doped La$_2$NiO$_{4+\delta}$ (d) and Nd$_2$NiO$_{4+\delta}$ (e). These data were extracted from Table 5.
Figure S4. Electrochemical behavior of the nickelate electrodes measured for symmetrical cells: polarization resistances of the A-doped nickelates at 500 °C (a), 600 °C (b) and 700 °C (c); polarization resistances of the undoped \(\text{La}_2\text{NiO}_{4+\delta} \) (d) Cu-doped \(\text{La}_2\text{NiO}_{4+\delta} \) (e); activation energy values of the overall polarization conductivity. These data were presented on the basis of Table 4.
Figure S5. Performance of PCFCs with cathodes based on Pr$_2$NiO$_{4+\delta}$ (a,c) or La$_2$NiO$_{4+\delta}$ (b,d): polarisation resistances (a,b) and maximal power densities (c,d). These data were presented on the basis of Tables 9 and 10. MD is the multi-doped oxides. Composites are two-phase systems containing the undoped La$_2$NiO$_{4+\delta}$ component (weight ratios can be found in the corresponding tables).