Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Recent advances in layered Ln₂NiO_{4+δ} nickelates: fundamentals and prospects for their applications in protonic ceramic fuel and electrolysis cells

Artem P. Tarutin ^{a,b,}, **b**, Julia G. Lyagaeva ^{a,b,}, **b**, Dmitry A. Medvedev ^{a,b,}, **b**,*, Lei Bi ^{c,}, **b**,*, Aleksey A. Yaremchenko ^{d,}, **b**,*, and the set of the set of

^a Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Yekaterinburg 620137, Russia

*Corresponding authors, e-mails:

dmitrymedv@mail.ru (Dmitry Medvedev), lei.bi@usc.edu.cn (Lei Bi), ayaremchenko@ua.pt (Aleksey Yaremchenko)

> This file contains: Figures: 5

S - 1

Figure S1. Relationships between compositions of nickelate materials with their oxygen-ionic transport features: oxygen-ionic conductivity of the A-site doped nickelates measured at 900 °C (a), 800 °C (b) and 700 °C (c); oxygen-ionic conductivity of the B-site doped lanthanum nickelates (d) and praseodymium nickelates (e); ionic transference number (f) and activation energy values (y) of ionic-conductivity for the basic and doped nickeltaes. These data were extracted from Table 2.

S - 2

Figure S2. Oxygen surface exchange and diffusion coefficient values as well as the corresponding apparent activation energies for $Ln_2NiO_{4+\delta}$ -based compounds. These data were presented on the basis of Table 3.

Figure S3. Concentration dependences of average thermal expansion coefficients for some undoped and A-site doped $La_2NiO_{4+\delta}$ (a), $Nd_2NiO_{4+\delta}$ (b), $Pr_2NiO_{4+\delta}$ (c) as well as for B-site doped $La_2NiO_{4+\delta}$ (d) and $Nd_2NiO_{4+\delta}$ (e). These data were extracted from Table 5.

Figure S4. Electrochemical behavior of the nickelate electrodes measured for symmetrical cells: polarization resistances of the A-doped nickelates at 500 °C (a), 600 °C (b) and 700 °C (c); polarization resistances of the undoped La₂NiO_{4+ δ} (d) Cudoped La₂NiO_{4+ δ} (e); activation energy values of the overall polarization conductivity. These data were presented on the basis of Table 4.

Figure S5. Performance of PCFCs with cathodes based on $Pr_2NiO_{4+\delta}$ (a,c) or $La_2NiO_{4+\delta}$ (b,d): polarisation resistances (a,b) and maximal power densities (c,d). These data were presented on the basis of Tables 9 and 10. MD is the multi-doped oxides. Composites are two-phase systems containing the undoped $La_2NiO_{4+\delta}$ component (weight ratios can be found in the corresponding tables).