Supporting Information

Flexible and wide pressure range triboelectric sensor array for real-time pressure detection and distribution mapping

Dan Yang,^{‡ab} Hengyu Guo,^{‡b} Xiangyu Chen,^c Longfei Wang,^b Peng Jiang,^b Weiqiang

Zhang, $^{\rm b}$ Liqun Zhang, $^{\rm d}$ and Zhong Lin Wang $^{* b c}$

^aBeijing Key Lab of Special Elastomeric Composite Materials, Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing

102617, P. R. China

^bSchool of Material Science and Engineering, Georgia Institute of Technology,

Atlanta, GA 30332-0245, USA

^cBeijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

^dDepartment of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

[†]Electronic supplementary information (ESI) available.

[‡]Co-authorship.

*Corresponding author. E-mail: zhong.wang@mse.gatech.edu (Z. L. Wang).

Sample	Sensitivity	Measuring	Response	Reference
		range	time	
GO paper	17.2 kPa ⁻¹	0-20 kPa	75 ms	[1]
Smart textiles	0.77 V Pa ⁻¹	0-14 kPa	80 ms	[2]
Expandable microsphere	150 mV Pa ⁻¹	< 1 kPa	-	[3]
Convex microarrays	30.2 kPa ⁻¹	< 1 MPa	25 ms	[4]
CNT/hydrophobically	0.127 kPa ⁻¹	0-50 kPa	0.6 s	[5]
Human skin	0.29±0.02 V kPa ⁻¹	<10 kPa	0.1 s	[6]
Elastomer/ionic hydrogel	0.013 kPa ⁻¹	1.3-70 kPa	-	[7]
PDMS/MCNT	0.51 V kPa ⁻¹	5-450 kPa	0.45 s	[8]
Washable electronic textiles	0.0479 kPa ⁻¹ (<100 kPa)	<650 kPa	-	[9]
	0.0186 kPa ⁻¹ (100-400 kPa)			
Trib-skins	0.29 kPa ⁻¹	<25 kPa	-	[10]
Endocardial sensor	1.195 mV mmHg ⁻¹	0-350 mmHg	-	[11]
Hydrogel-based sensor	0.05 kPa^{-1}	0-3.27 kPa	150 ms	[12]
MXene-textile	12.095 kPa ⁻¹ (29-40 kPa)	0-40 kPa	26 ms	[13]
	3.844 kPa ⁻¹ (< 29 kPa)			
Epidermis microstructure	25.1 kPa ⁻¹	0-2.6 kPa	120 ms	[14]
Core-shell nanofiber mats	0.43 kPa ⁻¹ (0.01-1.5 kPa)	0.01-100 kPa	-	[15]
	0.068 V kPa ⁻¹ (100-700 kPa)			
Weaving constructed sensor	45.7 mV Pa ⁻¹	0-710 Pa	< 5 ms	[16]
PVDF-TrFE sponge	0.104 V kPa ⁻¹ (0.05 to 5 kPa)	0.05-600 kPa	< 5 ms	[17]
	0.055 V kPa ⁻¹ (5 to 60 kPa)			
	0.049 V kPa ⁻¹ (60 to 600 kPa)			
Silver nanowires/ PDMS	2.94±0.25 kPa ⁻¹ (0-2 kPa)	<6.7 kPa	<50 ms	[18]
electrode	0.75±0.06 kPa ⁻¹ (2-6.7 kPa)			
Polyimide/CNT	11.28 kPa ⁻¹	0-61 kPa	50 ms	[19]
PVDF-Ag/ethyl	1.67 V kPa ⁻¹ (0 to 3 kPa)	0-32 kPa	-	[20]
cellulose/conductive fabrics	0.2 V kPa ⁻¹ (3 to 32 kPa)			
PVDF/carbon/PU electronic skin	0.18 V kPa ⁻¹	0-175 kPa	-	[21]
ISTSA	0.063 V kPa ⁻¹	5-50 kPa	-	[22]
Wireless textile-based sensor	3.88 V kPa ⁻¹	0.1-4.3 kPa		[23]
	0.54 V kPa ⁻¹	4.3-9.8 kPa		
Self-Powered Electronic Skin	$\sim 10^3 \text{ kPa}^{-1}$	0.02-30 kPa	8 ms	[24]
Shape-adaptive electronic skin	$10.89 \pm 0.5 \text{ mV kPa}^{-1}$	80-230 kPa	-	[25]
Wearable, breathable, and	1.33 V kPa ⁻¹	1.95-3.13 kPa		[26]
washable sensing textile	0.32 V kPa ⁻¹	3.2-4.61 kPa		
C-TENG	15.6 V MPa ⁻¹	0-1.1 MPa	40 ms	This work

Table S1 Comparison of the performance of C-TENG with various advanced sensors.

Fig. S1 XPS wide range and high-resolution C 1s spectrum of BT and BT@PDA

nanoparticles.

Fig. S2 Numerically calculated potential distribution of C-TENG at different

deformations by using COMSOL software.

Fig. S3 Response time of a single C-TENG.

Fig. S4 V_{oc} values of C-TENG with cuboids of (a) 9, (b) 16, (c) 25, and (d) 36 under

different pressures.

S5 V_{oc} values of C-TENG with different Young's moduli of (a) 0.09 MPa, (b) 0.55

MPa, (c) 0.94 MPa, and (d) 2.63 MPa as a function of the pressure.

Fig. S6 (a) Stress-strain curves with strain lower than 5% and (b) Young's modulus of SR composites filled with different contents of BT@PDA nanoparticles.

Fig. S7 Measured output voltages of C-TENG with cuboids height of 3 mm under acrylic sheets with "T", "E", "N", and "G" shape at deformation of 1.5 mm.

Fig. S8 Stability and durability of the C-TENG under around 1200 s working time.

Reference

- L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, *ACS Nano*, 2017, **11**, 8790.
- [2] Z. Lin, J. Yang, X. Li, Y. Wu, W. Wei, J. Liu, J. Chen, and J. Yang, Adv. Funct. Mater., 2018, 28, 1704112.
- [3] Z. Liu, Z. Zhao, X. Zeng, X. Fu, and Y. Hu, *Nano Energy*, 2019, **59**, 295.
- [4] Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu, R. Sun, and C. P. Wong, *Nano Energy*, 2020, 70, 104436.
- [5] Z. Qin, X. Sun, Q. Yu, H. Zhang, X. Wu, M. Yao, W. Liu, F. Yao, and J. Li, ACS Appl. Mater. Interfaces, 2020, 12, 4944.
- Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, *ACS Nano*, 2013, 7, 9213.
- [7] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, *Sci. Adv.*, 2017, 3, e1700015.
- [8] M. S. Rasel, P. Maharjan, M. Salauddin, M. T. Rahman, H. O. Cho, J. W. Kim, and J. Y. Park, *Nano Energy*, 2018, 49, 603.
- [9] R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang,
 C. Li, and Z. L. Wang, *ACS Nano*, 2018, **12**, 5190.
- [10] Y. C. Lai, J. Deng, R. Liu, Y. C. Hsiao, S. L. Zhang, W. Peng, H. M. Wu, X.
 Wang, and Z. L. Wang, *Adv. Mater.*, 2018, **30**, 1801114.
- Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li, D. Jiang, F. Xie, D. Qu, Y. Zou, Y. Huang, H. Li, C. Zhao, P. Tan, M. Yu, Y. Fan, H. Zhang, Z. L. Wang, and Z. Li, *Adv. Funct. Mater.*, 2019, 29, 1807560.
- [12] G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si, W. Huang, and X. Dong, Adv. Funct. Mater., 2018, 28, 1802576.
- [13] T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang, T. Zhao, X. Li, and J. Zhang, J. Mater. Chem. C, 2019, 7, 1022.
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian,
 Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, ACS Nano, 2018, 12, 2346.

- [15] M. F. Lin, J. Xiong, J. Wang, K. Parida, and P. S. Lee, *Nano Energy*, 2018, 44, 248.
- [16] K. Meng, J. Chen, X. Li, Y. Wu, W. Fan, Z. Zhou, Q. He, X. Wang, X. Fan, Y. Zhang, J. Yang, and Z. L. Wang, *Adv. Funct. Mater.*, 2019, **29**, 1806388.
- [17] K. Parida, V. Bhavanasi, V. Kumar, R. Bendi, and P. S. Lee, *Nano Res.*, 2017, 10, 3557.
- [18] X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang, Y. Zhang, R. Sun, and C. P. Wong, ACS Appl. Mater. Interfaces, 2017, 9, 26314.
- [19] X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu, C. Liu, L. Mi, Z. Guo, and C. Shen, ACS Appl. Mater. Interfaces, 2019, 11, 42594.
- [20] M. Lou, I. Abdalla, M. Zhu, J. Yu, Z. Li and B. Ding, ACS Appl. Mater. Interfaces, 2020, 12, 1597.
- [21] Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu and B. Ding, Adv. Funct. Mater., 2020, 30, 1908411.
- [22] L. Wang, Y. Liu, Q. Liu, Y. Zhu, H. Wang, Z. Xie, X. Yu and Y. Zi, *Microsyst. Nanoeng.*, 2020, 6, 59.
- [23] K. Meng, S. Zhao, Y. Zhou, Y. Wu, S. Zhang, Q. He, X. Wang, Z. Zhou, W. Fan, X. Tan, J. Yang and J. Chen, *Matter*, 2020, 2, 896.
- [24] Q. J. Sun, X. H. Zhao, C. C. Yeung, Q. Tian, K. W. Kong, W. Wu, S. Venkatesh,
 W. J. Li and V. A. L. Roy, *ACS Appl. Mater. Interfaces*, 2020, 12, 37239.
- [25] M. Zhu, M. Lou, I. Abdalla, J. Yu, Z. Li and B. Ding, *Nano Energy*, 2020, 69, 102429.
- [26] M. N. Lou, I. Abdalla, M. M. Zhu, X. D. Wei, J. Y. Yu, Z. L. Li and B. Ding, ACS Appl. Mater. Interfaces, 2020, 12, 19965.