Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Substantially Improved Energy Storage Capability of Ferroelectric Thin Films

for Application in High-temperature Capacitors

Zhongbin Pan^{a, b, 1*}, Jie Ding^{b, 1}, Xu Hou^{e, 1}, Songhan Shi^b, Lingmin Yao^d, Jinjun Liu^b,

Peng Lic, Jianwen Chenf, Jiwei Zhaig*, and Hui Pana*

^aInstitute of Applied Physics and Materials Engineering, University of Macau, Macau

SAR, China. Email: huipan@um.edu.mo (Hui Pan)

^bSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo,

Zhejiang 315211, China. Email: panzhongbin@163.com (Zhongbin Pan)

^cSchool of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.

^dSchool of Physics and Electronic Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.

^eDepartment of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China

^fSchool of Electronic and Information Engineering, Foshan University, Foshan, 528000, China.

^gSchool of Materials Science & Engineering, Tongji University, Shanghai, 201804 China. Email: apzhai@tong.edu.cn (Jiwei Zhai)

Supporting Information 1

Figure S1 Charging/discharging curves of BNTZ-0.09BFO thin film.

Supporting Information 2

Figure S2 Comparison of energy density and power density for the BNTZ-0.09BFO thin film and other capacitors.

Supporting Information 3

Samples	D (nm)	λ	θ	β
x = 0.00	30.5±0.5	0.145	16.5±0.07	0.00441±0.00002
x= 0.03	25.98±0.4	0.145	15.14±0.05	0.00518±0.00003
x = 0.06	22.1±0.3	0.145	16.37±0.04	0.00609±0.00001
x = 0.09	19.3±0.5	0.145	16.33±0.06	0.00696±0.00001
x = 0.12	17.2±0.5	0.145	16.24±0.03	0.00781 ± 0.00002

Table S1 the average grain sizes BNTZ-xBFO thin films.