Supporting Information

Integrating P2 into O'3 toward a Robust Mn-Based Layered

Cathode for Sodium-Ion Batteries

Zhaoguo Liu^a Kezhu Jiang^a, Shiyong Chu^a, Jianghua Wu^a, Hang Xu^a, Xueping Zhang ^a, Peng Wang ^{ab}, Shaohua Guo^{*a} and Haoshen Zhou^{*ac}

- a. Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China. E-mail: shguo@nju.edu.cn; hszhou@nju.edu.cn.
- b. Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023 Nanjing, China.
- c. Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan.
- *Corresponding authors.

E-mail addresses: shguo@nju.edu.cn; hszhou@nju.edu.cn.

Fig. S1 Rietveld refinement patterns of (a) O'3 NaMnO₂ (hereafter denoted as O'3 NMO) and (b) P2 Na_{0.67}MnO₂ (denoted as P2 NaMO) using lab X-ray Diffraction data.

Fig. S2 The galvanostatic charge/discharge curves at 0.1C in the voltage range of 2.0-4.0 V of (a) O'3 NMO and (b) P2 NaMO.

Fig. S3 The Comparison of performance parameters including capacity, retention and cycle number between this work and other bi-phase structure materials.

Fig. S4 The Cyclic voltammogram of (a) P2/O'3 NMCSO, (b) O'3 NMO, and (c) P2 NaMO performed in the voltage region 2.0-4.0V at a scan rate of 0.1 mV s^{-1} .

Fig. S5 Detailed schematic diagram of a single-step GITT experiment at 0.1C in the voltage of \sim 3.5 V.

The GITT measurement was conducted to investigate the kinetics of sodium ions during the progresses of insertion and extraction. And the diffusion coefficients were determined according to the Equation S1.

$$D_{Na^{+}} = \frac{4}{\pi \cdot \tau} \left(\frac{m_B \cdot V_m}{M_B \cdot A} \right)^2 \left(\frac{\Delta E_s}{\Delta E_{\tau}} \right)^2 \quad \left(\tau \ll \frac{L^2}{D_{Na^{+}}} \right)$$
Equation S1

D is the diffusion coefficient, τ is the pulse duration (7200s), m_B is the mass of the active materials, V_m is the molar volume, M_B is the molecular mass, A is the surface area, ΔE_s and ΔE_{τ} are obtained via GITT curves as shown in Fig S5.

Fig. S6 The XRD patterns of cathode electrodes that experience 200 charging and discharging cycles.

Fig. S7 The comparison of parameters c and volume between P2/O'3 NMCSO and the P2 compound.

Fig. S8 Structure transformation of P2 NaMO electrode utilizing in situ XRD and evolution of lattice parameters a, b, c and volume during the electrochemical sodiation/desodiation process.

Fig. S9 Structure transformation of O'3 NMO electrode utilizing ex situ XRD and evolution of lattice parameters a, b, c and volume during the electrochemical sodiation/desodiation process.

Theoretical chemical formula	Measured atomic ratio			
	Na	Mn	Cu	Sb
NaMn _{0.9} Cu _{0.067} Sb _{0.033} O ₂	1.005	0.890	0.080	0.029

Table S1. The results of ICP-AES experience.

Table S2. Lattice parameters of the P2/O'3 NMCSO compound sample after Rietveld refinement.

Phase		Р2	0'3
Space Group		P63/mmc	C2/m
	a(Å)	2.89482	5.65073
Cell Parameters	b(Å)	2.89482	2.86438
	c(Å)	11.17161	5.80847
	α(°)	90.000	90.000
	β(°)	90.000	112.948
	γ(°)	120.000	90.000
Agreement Factors	volume(Å ³)	81.075	86.574
	R _{wp} (%)	6.7	5
	R _p (%)	4.6	3
	χ^2	4.24	
	Phase Ratio	46.144	53.856

Phase		P2 Na _{0.67} MnO ₂	O'3 NaMnO ₂
Space Group		P63/mmc	C2/m
	a(Å)	2.87777	5.66622
	b(Å)	2.87777	2.85731
	c(Å)	11.1446	5.80144
Cell Parameters	α(°)	90.000	90.000
	β(°)	90.000	113.144
	γ(°)	120.000	90.000
	volume(Å ³)	79.929	86.367
Agreement Factors	R _{wp} (%)	8.67	10.16
	R _p (%)	6.33	6.42
	χ^2	4.74	4.47

Table S3. Lattice parameters of the P2 $Na_{0.67}MnO_2$ and O'3 $NaMnO_2$ compound samples after Rietveld refinement.

Table S4. The results of EIS experiments fitted via the following equivalent circuit.

Sample	$R_s(\Omega)$	$R_1(\Omega)$	$R_{ct}(\Omega)$		
P2/O'3 NMCSO	3.341	60.3	57.2		
O'3 NMO	9.704	60.89	482.9		
$\begin{array}{c c} R_{s} & R_{1} & R_{ct} & Z_{w} \\ \hline \\ \hline \\ \hline \\ \\ \end{array} \\ \hline \\ \\ CPE1 & CPE2 \end{array}$					