Electronic Supplementary Information

Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO₂ reduction

Simin Li^a, Marcel Ceccato^a, Xiuyuan Lu^b, Sara Frank^a, Nina Lock^c, Alberto Roldan^b, Xin-Ming Hu^{a,d,*}, Troels Skrydstrup^a, and Kim Daasbjerg^{a,*}

^a Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry Aarhus University Gustav Wieds Vej 14, 8000 Aarhus, Denmark Email: kdaa@chem.au.dk

^b Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, UK

^c Carbon Dioxide Activation Center (CADIAC), Department of Engineering Aarhus University Åbogade 40, 8200 Aarhus N, Denmark

^d Environment Research Institute Shandong University Binhai Road 72, Qingdao 266237, China. Email: <u>huxm@sdu.edu.cn</u>

Figure S1. (a) High resolution XPS spectra of C 1s and (b) O 1s of the materials obtained at each step in the synthesis of ACP/S-N-Ni.

Figure S1a displays the high resolution C 1s spectra of the materials obtained at each step in the synthesis of ACP/S-N-Ni. For raw CP the peaks at 284.5 and 285.3 eV are ascribed to sp^2 (C=C) and sp^3 (C–C) carbon, respectively. The small peaks at higher binding energies are related to C–O (~286.5 eV), C=O (~287.6 eV), and O–C=O (~288.9 eV). In addition, an intense peak at ~292.6 eV is attributed to CF₂, stemming from the polytetrafluoroethylene used to treat the as-received CP. After acid treatment to afford ACP, XPS reveals a new shoulder at ~285.8 eV, corresponding to C-SO₃⁻.^{S1, 2} The subsequent adsorption of Ni²⁺ to produce ACP-Ni²⁺ does not cause obvious changes in these peaks. After pyrolysis in the presence of urea, the shoulder

pertaining to $C-SO_3^-$ disappears on ACP/S-N-Ni. Instead, a peak attributed to C-S/C-N emerges. Moreover, the CF₂ peak disappears, suggesting that the F atoms are completely removed.

Figure S1b shows the high resolution O 1s spectra at the same stages of the synthesis. For pristine CP, the peaks at 530.7, 532.4, and 533.8 eV are ascribed to carbonyl (C=O), hydroxyl (C–OH) and ester (O–C=O), respectively. After acid treatment, an additional peak at 531.6 eV appears for ACP, attributed to $O-S^2$ and in agreement with the deconvolution of the S 2p spectrum (see **Figure 2c**). Moreover, the intensity of the O 1s spectrum increases notably after acid activation (content of O increases from 0.2 to 5.7 at%; see also **Table S2**).

Figure S2. XPS survey spectra of CP/N-Ni, ACP/S, ACP/S-N, ACP/S-Ni, and ACP/S-N-Ni.

Figure S2 displays the XPS survey spectra of the electrodes used in this work. The electrodes all consist of mainly carbon and a small amount of oxygen. In addition, a S signal, appears for all electrodes, the exception being CP/N-Ni due to the lack of acid treatment in this case. In accordance with expectations, N and Ni signals are seen on the electrodes where N and/or Ni were introduced during the synthesis.

Figure S3. (a) High resolution XPS spectra of C 1s, (b) O 1s, (c) S 2p, (d) N 1s, and (e) Ni 2p of CP/N-Ni, ACP/S, ACP/S-Ni, ACP/S-N, and ACP/S-N-Ni.

Figure S3a presents the high resolution XPS C 1s spectra of CP/N-Ni, ACP/S, ACP/S-Ni, ACP/S-N, and ACP/S-N-Ni. In general, they all show two major peaks at 284.5 and 285.2 eV, which are ascribed to sp^2 (C=C) and sp^3 (C–C) carbon, respectively. Three smaller peaks at 286.5, 287.5, and 288.7 eV are attributed to C–O, C=O, and O–C=O, respectively. A sixth peak at 285.8 eV can be assigned to C-N and/or C-S bonds of similar binding energies.

Figure S3b displays the high resolution XPS O 1s spectra of CP/N-Ni, ACP/S, ACP/S-Ni, ACP/S-N, and ACP/S-N-Ni. The CP/N-Ni electrode shows three peaks at 530.8, 532.1 and 533.5 eV, which are ascribed to carbonyl (C=O), hydroxyl (C–OH), and ester (O–C=O), respectively. The ACP/S, ACP/S-N, ACP/S-Ni, and ACP/S-N-Ni electrodes exhibit the same three peaks as well as a new peak at ~531.8 eV corresponding to O–N and/or O–S bonds. In addition, S is introduced for all the electrodes undergoing acid treatment (i.e. ACP/S, ACP/S-N, ACP/S-Ni, and ACP/S-Ni, and ACP/S-Ni, and ACP/S-Ni, and ACP/S-Ni, and ACP/S-Ni, where thienyl S (163.7 and 165.0 eV) is the major one and sulfonic acid groups (168.5 eV) the minor one. Note that a weak Ni-S bond is also observed in ACP/S-Ni and ACP/S-N-Ni.

Figure S3d displays the high resolution XPS N 1s spectra of CP/N-Ni, ACP/S-N, and ACP/S-N-Ni. The CP/N-Ni electrode contains pyridinic, pyrrolic, and graphitic N species. The same three types of N species are present in ACP/S-N and ACP/S-N-Ni. Furthermore, ACP/S-N exhibits one more oxidized N species, while ACP/S-N-Ni has oxidized N and N-Ni species.

Figure S3e presents the high resolution XPS Ni 2p spectra of the two electrodes containing Ni, i.e. ACP/S-Ni and ACP/S-N-Ni. The former electrode shows a slightly higher Ni binding energy than the latter, indicating the different chemical environment of Ni in the two electrodes. This is not surprising as the Ni in ACP/S-Ni mainly binds with S, while the Ni in ACP/S-N-Ni mainly coordinates with N, and only to a smaller extent with S. The different environment of Ni explains the inferior catalytic activity of ACP/S-Ni for eCO_2RR .

Figure S4. k^3 -weighted k-space spectra of ACP/S-N-Ni.

Figure S5. Proposed structures of the electrocatalytically active ACP/S-N-Ni material based on DFT calculations along with the corresponding fit of EXAFS data of ACP/S-N-Ni (see fitting details in **Table S1**). The grey, blue, yellow, and brown spheres represent Ni, N, S, and C atoms, respectively.

Figure S6. (a-d) SEM images of raw CP and (e-h) ACP/S-N-Ni at varying magnifications. (i) Corresponding element mapping of ACP/S-N-Ni by EDS equipped on SEM.

Figure S7. PXRD patterns of raw CP and ACP/S-N-Ni materials.

Figure S7 presents the PXRD patterns of the raw CP and ACP/S-N-Ni. Both electrodes show two peaks at $\sim 26^{\circ}$ and $\sim 43^{\circ}$, which are indexed to the (002) as well as (100) and (101) planes of graphitic structure.^{S3} A peak at $\sim 18^{\circ}$ in CP is attributed to polytetrafluoroethylene (PTFE),

originating from the as-received material. This is in line with the XPS analysis (**Figure 2b**). The PTFE peak disappears in ACP/S-N-Ni since PTFE thermally decomposes at high temperature.^{S4} The PXRD pattern of ACP/S-N-Ni shows no peaks pertaining to any Ni species, indicating the absence of crystalline Ni-based particles.

Figure S8. Cyclic voltammograms recorded at CP/N-Ni, ACP/S, ACP/S-N and ACP/S-Ni using v = 10 mV s⁻¹ in 0.5 M KHCO₃.

Figure S9. ¹H NMR spectra of the electrolyte after performing multiple electrolyses at potentials between -1.07 and -0.57 V vs RHE using ACP/S-N-Ni as working electrode in 0.5 M KHCO₃. No signal but the DMSO reference is observed, suggesting that no CO₂ reduction product is produced in the electrolyte.

Figure S10. (a) FE_{H2} and (b) |j| using CP/N-Ni, ACP/S, ACP/S-N, ACP/S-Ni, and ACP/S-N-Ni in 15 min electrolysis at various potentials in 0.5 M KHCO₃.

Figure S11. Mass activities relative to the Ni loading in ACP/S-N-Ni and APC/S-Ni.

Figure S12. Cyclic voltammograms recorded at ACP/S-N-Ni, ACP/S, ACP/S-N, ACP/S-Ni, and CP/N-Ni between 0.1–0.6 V vs RHE using v = 5, 10, 20, 30, 40, and 50 mV s⁻¹ in CO₂-saturated 0.5 M KHCO₃.

Figure S13. Plots of the double layer current density, j_{dl} (obtained at 0.35 V vs RHE from voltammograms in **Figure S15**), vs v.

Figure S14. FE and |j| measured at -0.77 V vs RHE for ACP/S-N-Ni in the absence/presence of 10 mM KCN in CO₂-saturated 0.5 M KHCO₃.

Figure S15. XPS spectra pertaining to the (a) survey, (b) Ni 2p, (c) N 1s, and (d) S 2p of ACP/S-N-Ni before and after 14 h electrolysis at -0.77 V vs RHE.

Figure S15 shows the XPS spectra recorded of the ACP/S-N-Ni electrode after 14 h electrolysis. Compared with the pristine one, a more intense peak from O and an additional peak from K are observed, stemming from residual amount of adsorbed KHCO₃ (from the electrolyte) on the carbon fiber surface. Otherwise, the changes observed in the Ni 2p, N 1s, and S 2p spectra are neglible after electrolysis, thus substantiating the high stability of the ACP/S-N-Ni electrode.

Figure S16. FE and /j/ measured at -0.77 V vs RHE for ACP/S-N-Ni and F_{free}-ACP/S-N-Ni after 15 min electrolysis in CO₂-saturated 0.5 M KHCO₃.

Hypothetic structure (DFT)	$E_{ m surface}$ (eV) ^[c]	Formation energy (eV)	Shell	Coordination Number	Interatomic distance /Å (DFT)	$\Delta\sigma^2({\rm \AA}^2)^{[d]}$	<i>R</i> -factor ^[e]
N ₄ -Ni	-267.68	1.92	Ni-N	4	1.89078	0.0006	0.0850
N ₃ S-Ni	-260.89	5.11	Ni-N	3	1.87935	0.0100	0.0060
			Ni-S	1	1.93873		
NSNS-Ni	-253.63	8.77	Ni-N	2	1.95214	0.1020	0.0300
			Ni-S	2	1.86214		
NNSS-Ni	-252.79	9.61	Ni-N	2	1.79408	0.0100	0.0150
			Ni-S	2	1.99755		
NS ₃ -Ni	-245.33	13.47	Ni-N	1	1.81608	0.0020	0.0100
			Ni-S	3	1.92566		
S4-Ni	-236.67	18.53	Ni-S	4	1.89784	0.0070	0.0400

Table S1. Fitting EXAFS Data Using Different Structures Based on DFT Calculations.^{[a],[b]}

^[a] The data range adopted for data fitting in k-space and R-space are 3–10 and 1–3 Å, respectively.

^[b]DFT: density functional theory.

^[c] E_{surface} : energy of doped graphene surfaces

^[d] $\Delta \sigma^2$: Debye-Waller factor. ^[e] *R*-factor: a measure of the deviation between the experimental data and the fitting.

Electrode	C (at %)	F (at %)	O (at %)	S (at %)	N (at %)	Ni (at %)
СР	46.3±0.6	53.5±0.8	0.2±0.2			
ACP	45.5±1.1	47.1±0.8	5.7±0.4	1.7±0.4		
ACP-Ni ²⁺	49.2±0.7	49.3±0.9	1.5±0.3	[a]		
CP/N-Ni	97.0±0.1		2.1±0.1		0.9±0.1	
ACP/S	98.2±0.3		1.6±0.3	0.2±0.1		
ACP/S-N	96.8±0.6		2.2±0.5	0.2±0.1	0.8±0.1	
ACP/S-Ni	97.0±0.4		2.7±0.5	0.2±0.1		0.1±0.01
ACP/S-N-Ni	95.4±0.5		2.8±0.5	0.3±0.1	1.2±0.2	0.3±0.1

Table 52. Elemental Composition of Different Electrones Determined by ALS

^[a] Amount of S in ACP-Ni²⁺ could not be determined because of overlaying F and C signals in the XPS survey spectrum. The high-resolution S 2p spectrum proves the presence of S.

ICP-OES was employed to determine the metal content in the electrodes containing Ni, as this technique is more accurate than XPS.

Electrode	Electrode area (cm ²)	Electrode mass (mg)	Ni mass on electrode (mg)	Ni loading (mg cm ⁻²)	Ni content (wt %)
ACP/S-Ni	$1 \times 0.5 \times 2$	1.99	0.0118	0.0118	0.59
ACP/S-N-Ni	$1 \times 0.5 \times 2$	2.23	0.0234	0.0234	1.04

Table S3. Metal Content in Different Electrodes Determined by ICP-OES.

^[a] Includes both sides of an electrode with an area of 1×0.5 cm².

	Electrocatalyst ^[a]	Cathode material	ICP wt%	Mass loading (mg cm ⁻²)	Metal loading (mg cm ⁻²)	FE _{CO} (%) ^[b]	η (mV) [c]	<i>j</i> (mA cm ⁻²) [d]	$C_{\rm dl}$ (mF cm ⁻²)	ref
Ι	CoTPP-CNT ^[e]	Glassy carbon	N/A	N/A	N/A	91	550	3.2	N/A	S5
	COF-367-Co ^[f]	Carbon fibric	1.00	N/A	N/A	90	550	3.3	N/A	S 6
	CoPPc/CNT ^[g]	Carbon paper	2.60	1.00	0.0260	>80	340	~4.0	N/A	S 7
	Ni- TAPc/CNTs ^[h]	Rotating disk electrode	0.27	0.10	0.0003	99	600	32.3	N/A	S 8
	Ni(alkynyl- cyclam)	Glassy carbon	N/A	N/A	N/A	8	N/A	~1.0	N/A	S 9
	Ni-cyclam	Glassy carbon	N/A	N/A	N/A	91	N/A	~0.2	N/A	S 10
	Fe-PB ^[i]	Glassy carbon	N/A	0.14	N/A	100	520	~0.4	N/A	S 11
Π	Fe-CNPs-w/o	Carbon cloth	N/A	1.00	N/A	98	470	~2.5	3.1	S12
	Fe-N-C	Glassy carbon	N/A	0.46	N/A	93	390	~6.0	N/A	S 13
	STPYP-Co	Carbon paper	N/A	0.12	N/A	96	500	6.5	N/A	S14
	Co-N5/HNPCSs	Carbon paper	3.54	N/A	N/A	99	680	10.2	N/A	S15
	Zn-N-G-800	Carbon cloth	N/A	2.00	N/A	90	390	~4.5	21.9	S16
	SACs Ni-N-C	Carbon paper	1.53	0.10	0.0015	72	890	10.5	N/A	S 17
	NiSA-N-CNTs	Carbon paper	$20.0 \\ 0$	1.00	0.2000	91	N/A	23.5	N/A	S18
	A-Ni-NSG	Glassy carbon rotating disk electrode	2.80	0.1	0.0028	97	610	22.0	8.3	S19
	Ni-N-C	Carbon paper	N/A	0.60	N/A	97	640	~7.5	30.9	S20
III	NiSA/PCFM ^[j]	Electrospin- ning membrane	N/A	N/A	N/A	96	590	~13	20.2	S21
	ACP/S-N-Ni	Carbon paper	1.04	/	0.02	91	660	4.1	1.54	This work

Table S4. Comparison of the Performance of ACP/S-N-Ni with Other Single Atom Catalysts and Supported Molecular Complexes for *e*CO₂RR.

^[a] Electrocatalyst are categorized into three types, i.e. I: supported molecular catalysts or metal-organic complexes, II: powder single atom catalysts, III: self-supported single atom catalysts.

^[b] Maximum FE_{CO} in the reports.

^[c] Overpotential at which the maximum FE_{CO} is achieved.

^[d] Current density achieved at the listed overpotential.

^[e] Cobalt meso-tetraphenylporphyrin on carbon nanotubes.

^[f] COF: covalent organic framework.

^[g] Cobalt polyphthalocyanine-sheathed carbon nanotubes.

^[h] Nickel(II) 2,9,16,23-tetra(amino)phthalocyanine on carbon nanotubes.

^[i] PB: porphyrin box, which was synthesized by condensing six tetraformylphenylporphyrins and eight triamine linkers.

^[j] PCFM: porous carbon fiber membrane.

References

- S1. Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu and X. W. D. Lou, *Nat. Common.*, 2014, **5**, 1–8.
- S2. L. Zhang, L. Ji, P.-A. Glans, Y. Zhang, J. Zhu and J. Guo, *Phys. Chem. Chem. Phys.*, 2012, **14**, 13670–13675.
- S3. P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao and Y. Xie, *Nano Energy.*, 2019, **61**, 428–434.
- S4. M. Kim, S. Lee and B. Kang, *Adv. Sci.*, 2016, **3**, 1500366.
- S5. X. M. Hu, M. H. Ronne, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, *Angew Chem Int Ed.*, 2017, **56**, 6468–6472.
- S6. S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang and O. Yaghi, *Science.*, 2015, **349**, 1208–1213.
- S7. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee and Y. Li, *Chem.*, 2017, 3, 652–664.
- S8. S. Liu, H. B. Yang, S. F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang and B. Liu, *Angew Chem Int Ed.*, 2020, **59**, 798–803.
- S9. A. Zhanaidarova, C. E. Moore, M. Gembicky and C. P. J. C. C. Kubiak, *Chem. Commun.*, 2018, **54**, 4116–4119.
- S10. E. M. Nichols and C. Chang, *Organometallics.*, 2018, **38**, 1213–1218.
- S11. P. T. Smith, B. P. Benke, Z. Cao, Y. Kim, E. M. Nichols, K. Kim and C. J. Chang, *Angew Chem Int Ed.*, 2018, 57, 9684–9688.
- S12. C. Hu, S. Bai, L. Gao, S. Liang, J. Yang, S. D. Cheng, S. B. Mi and J. Qiu, ACS Catal., 2019, 9, 11579–11588.
- S13. X. Qin, S. Zhu, F. Xiao, L. Zhang and M. Shao, *ACS Energy Lett.*, 2019, **4**, 1778–1783.
- S14. J. Han, P. An, S. Liu, X. Zhang, D. Wang, Y. Yuan, J. Guo, X. Qiu, K. Hou, L. Shi, Y. Zhang, S. Zhao, C. Long and Z. Tang, *Angew Chem Int Ed.*, 2019, 58, 12711–12716.
- S15. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong and Y. Wang, J. Am. Chem. Soc., 2018, 140, 4218–4221.
- S16. Z. Chen, K. Mou, S. Yao and L. Liu, *ChemSusChem*, 2018, **11**, 2944–2952.
- S17. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, J. Am. Chem. Soc., 2017, 139, 8078–8081.
- S18. Y. Cheng, S. Zhao, B. Johannessen, J. P. Veder, M. Saunders, M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm and R. De Marco, *Adv. Mater.*, 2018, **30**, 1706287.
- S19. H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang and B. Liu, *Nature Energy*, 2018, 3, 140–147.
- S20. F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang and Y. Li, *J. Mater. Chem. A.*, 2019, **7**, 26231–26237.
- S21. H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu and C. He, *Nat. Commun.*, 2020, **11**, 593.