Electronic Supplementary Information

In situ knitted microporous polymer membranes for efficient CO₂

capture

Yingzhen Wu,^{a,b} Na Xing,^{a,b} Sen Li,^{a,b} Leixin Yang,^{a,b} Yanxiong Ren,^{a,b} Yutao Liu,^{a,b} Xu Liang,^{a,b} Zheyuan Guo,^{a,b} Hongjian Wang,^{a,b} Hong Wu ^{abc*} and Zhongyi Jiang ^{abd*}

Fig. S1. Thermogravimetric curves for K-PPO and K-PPO/BnOH(20) membranes.

Fig. S2. Optical images of (a) PPO/BnOH composite membrane and (b) K-PPO/BnOH(20) membrane.

Fig. S3. Cross-sectional SEM images of (a) PPO/BnOH composite membrane and (b)

K-PPO/BnOH(20) membrane.

Fig. S4. Solid-state ¹³C CP/MAS NMR spectra of PPO and K-PPO/BnOH(20) membranes.

incinoranes.

Fig. S5. Thermal DSC analysis of the PPO and K-PPO membranes.

Fig. S6. Isosteric heats of adsorption of CO₂ for K-PPO and K-PPO/BnOH(20) membranes

Fig. S7. (a)Comparison of the CO_2/N_2 performances enhancement for hydroxylfunctionalized membranes. The red dashed line is drawn to guide the eye. (b) Comparsion of CO_2/N_2 separation performance between our work and others¹⁻⁵ in Robeson plots.

Fig. S8. Exploratory results of gas separation performances of three other knitted microporous polymer membranes using benzylamine, pyrrole, and 1- phenylimidazole building units.

Fig. S9. (a) CO_2 permeability, (b) N_2 and CH_4 permeability, and (c) CO_2/N_2 and CO_2/CH_4 selectivity for K-PPO and K-PPO/BnOH(20) membranes as functions of time.

Membrane	m ₁ (g)	m ₂ (g)	Weight gain	Crosslinking
			(wt%)	degree %
Semi-K-PPO	0.7589	0.8146	7.35	126
K-PPO	0.7650	0.8525	11.43	196

Table S1 the crosslinking degree in different membranes

According to the previous reports⁶, we calculate the molar ratio of $-CH_2$ - bridge to PPO unit by the weight gain after crosslinking reaction. Pristine membranes were weighed before crosslinking reaction to determine weight (m₁). After reaction, membranes were reweighed (m₂). The membrane weight was measured by an electronic balance (OHAUS, CP224C). Each membrane was tested for three times and the average value was adopted. The weight gain (wt%) was calculated based on the following equations:

weight gain =
$$(m_2 - m_1) / m_1 \times 100\%$$
 (S1)

The crosslinking degree was calculated by:

Crosslinking degree =
$$2N_c/N_p$$
 (S2)

where N_c refers the amount of crosslinking bridge. N_p is the amount of repeat polymer units.

References

[1]. C. H. Jung and Y. M. Lee, Macromol Res, 2008, 16, 555-560.

[3]. N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller and I. Pinnau, J. Membr. Sci.,

^{[2].} X. H. Ma, O. Salinas, E. Litwiller and I. Pinnau, Polym. Chem., 2014, 5, 6914-6922.

2016, 505, 100-107.

- [4]. N. Alaslai, B. Ghanem, F. Alghunaimi and I. Pinnau, Polymer, 2016, 91, 128-135.
- [5]. N. Alaslai, X. Ma, B. Ghanem, Y. Wang, F. Alghunaimi and I. Pinnau, Macromol. Rapid. Commun., 2017, 38, 1700303.
- [6]. H. Liu, S. Li, H. Yang, S. Liu, L. Chen, Z. Tang, R. Fu and D. Wu, Adv. Mater., 2017, 29, 1700723.