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Experimental Section

Uniform Ni-MOFs precursor spheres synthesis. All the chemicals were directly used
after purchase without further purification. The hydrothermal method was followed to
synthesize Ni-MOFs precursors.! Under vigorous magnetic stirring, a mixture of
0.605 g Ni(NO;),-6H,0, 0.21 g trimesic acid, and 2.1 g of PVP-K30 (M,, = 40000)
was dissolved in 42 mL mixture of DMF, ethanol, and water (1:1:1, v/v/v). Then the
mixture was sealed in 70 mL Teflon-lined autoclave and heated to 150 °C for 10 h.
Afterward, the green precipitate was washed by DMF and ethanol for several times
and dried in a vacuum oven at 60 °C for 12 h.

Yolk—shell (YS) Ni,P1Sy/Ni@C/G spheres synthesis. The YS NiP;S/Ni@C/G
spheres were obtained via a one-step process. Briefly, 50 mg Ni-MOFs precursor
spheres, and the mixture of red P and S powder were separately placed in two quartz
boats, and the mixture of red P and S powder was placed at the upstream zone in a
tube furnace. The varied mass ratio of P and S (2:1, 1:1, and 1:2) was first mixed with
80 mg of powder using mortar and pestle to synthesize samples with dillerent S/P
ratios. Then, the furnace was set to increase up to 450 °C for 2 h with a ramp rate of 1
°C min'! bypassing Ar atmosphere to obtain Y'S Ni,P; S,/Ni@C/G microspheres. For
comparison, the pure S powder and P powder replace the mixture of red P and S
powder under the same above condition, respectively, were denoted as NigSg/Ni@C/G,
and Ni,P/Ni@C/G composites, respectively. Moreover, the Ni-MOF precursor was
calcined in air at 420 °C for 3h with 1 °C min’!, and the porous NiO was obtained.
Then, 50 mg porous NiO was phosphated by 750 mg NaH,PO,-H,0 at 350 °C for 2h
to synthesize Ni,P, and sulfided by 100 mg S power at 450 °C for 2h and then 600 °C
1h to prepare NigSg/NiS in Ar atmosphere, respectively.

Materials Characterization. X-ray diffraction (Bruker D§ ADVANCE) with Cu Ka
radiation was employed to identify the composition and phase structure of the as-
prepared Ni-based hybrids. Field emission scanning electron microscopy SEM
(FESEM, SU8220, 20 kV) operating at 5 kV was used to characterize the morphology.
TEM, HAADF-STEM, and elemental mapping images were recorded on an FEI
Tecnai F20 transmission electron microscope. The valence state of the samples was
investigated by X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD, Kratos),
using a monochromatic Al-Ka as radiation exciting source. N, adsorption/desorption

isotherm was investigated at 77K with an automated gas sorption analyzer



(Micromeritics ASAP 2460). The carbon and power contents in the hybrids were
determined by thermogravimetric analysis (TGA, TGA/DSC 3+, Switzerland) under
Ar and air atmosphere with a heating rate of 10 °C min-!, respectively.

Fabrication of half-cell and full-cell. The electrochemical performances of as-
prepared YS Ni-based composites were performed via CR2025 coin-type cells. For
fabrication of the working electrodes, the slurry of working electrodes consisted of 70
wt % active materials of the YS Ni-based composites, 20 wt % acetylene black, and
10 wt % polyvinylidene fluoride in methyl-2-pyrrolidone, which were mixed, then
coated on Cu foil and dried at 80 °C under vacuum for 12 h. The mass loading of each
working electrode was ~ 1.0 - 1.1 mg cm™. For sodium-ion batteries (SIBs) half-cell,
sodium foil was the counter electrode, and the was the 1 M NaClO, in ethylene
carbonate (EC)/diethyl carbonate (1:1, v/v) with 5 wt % fluoroethylene carbonate was
used as the electrolyte. For potassium ion batteries (PIBs) half-cell, the potassium foil
was employed as the counter electrode, and the electrolyte in the cell was 1 M KPFg
in EC/propylene carbonate (1:1 v/v). SICs full cell was also fabricated with the
optimized NiyPg75S025/Ni@C/G as the anode and activated carbon (AC) as the
cathode in the same electrolyte, and the mass ratio of cathode/anode was 3:1. A
Whatman GF/F glass microfiber filter was used as the separator for SIBs, PIBs, and
SICs.

Electrochemical testing. Galvanostatic discharge/charge (GDC) test and cycle-life
tests were performed on a Land 2001A tester (Wuhan Land Electronics. Ltd.). Cyclic
voltammetry (CV), GDC measurements of NICs, and electrical impedance
spectroscopy (EIS) test from 100 kHz to 10 mHz. The specific capacitance (C, F g'),
energy density (E, Wh kg!') and power density (P, W kg!) of NICs were calculated

using the following equations % 3:
C=1/[(dV/dy) x m] = IN/mAV,
E=05Cr?
P=FE/

where [ is the discharge current, A¢ is the discharge time (s), m is the total mass of

active material of the two electrodes, and V' stands for working voltage, respectively.

Computational Methods. The first principle calculations have been employed to

calculate the Na* ion adsorption energy and dil lusion energy barrier of Ni,P (111),



NigSg (222), and layer-Ni,P (111)-NigSg (222) hetero-structure, respectively. The
lattice mismatch was as follows: Au = -4.94%, Av = -3.17%. All calculations were
based on density functional theory (DFT) and performed using the Cambridge Serial
Total Energy Package (CASTEP) module, employing the ultra-soft pseudo-potential.*
The exchange-correlation functional under the generalized gradient approximation
(GGA) level was carried out using the Perdew-Burke-Ernzerhof (PBE) for solids
functional.’ The cut-o[] energy and the vacuum distance between the slabs were set to
517 eV and 20 A, respectively. The Broyden-Fletcher-Goldfarb-Shanno scheme was
employed as the minimization algorithm in the geometric optimization process until
the force of each atom was smaller than 0.03 eV/A.® The Brillouin zone was set as 3 x
3 x 1 k-grid, and the vacuum distance between the slabs was set to 20 A.

In the computation of the Na* adsorption energy, the following equation was
performed:

Ea4s= Egtab-substrate-Na+ = (Estab-substrate T Eslab-Na-+)

where Egapsubstrate aNd  Egpna+ are the total energy of the relaxed, isolated
substrate slabs (Ni,P (111), NigSg (222), and Ni,P(111)-NigSg(222) interface) and
single Na* in the same slab, respectively. Egap-substrate-Na+ &5 the total energy of the slab-
substrate-Na™ system. The migration barrier of Na-ion was conducted using the

supercell by the complete LST/QST method in the CASTEP module.



Figure S1 (a) SEM, (b) TEM image, and (c) Coordination environments of Ni*" ions

in the asymmetric units of Ni-MOF.
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Figure S2 TGA-DSC curves of Ni-MOF in the Ar and air atmosphere.
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Figure S3 SEM images and EDX spectra of YS Ni,P,S,/Ni@C/G, where (a, b), (c,

d), and (e, f) correspond to x = 0.25, 0.42, and 0.53, respectively.

Table S1 The x value of the Ni,P;_,S,/Ni@C/G determined by EDX.

Sample X value Mass weight
P power (g) S power (g)
YS Ni,P/Ni@C/G 0 0.080 0
Y'S NipPg 755025/Ni@C/G 0.25 0.053 0.027
Y'S NizPg 5850 42/Ni@C/G 0.42 0.040 0.040
YS NiyPg37S0.53/Ni@C/G 0.53 0.027 0.053
YS NigS¢/Ni@C/G 0.89 0 0.080
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Figure S4 Raman spectra of NpP/Ni@C/G, NigSg/Ni@C/G, and
NiyPg75S0.25/Ni@C/G, respectively.



Figure S5 (a) SEM images of (a) YS Ni,P/Ni@C/G, (b) YS NigSg/Ni@C/G, and (c-f)
Y'S Ni,PSy/Ni@C/G, respectively.
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Figure S7 SEM images of porous (a) NiO, (b) Ni,P, (c) NigSg/NiS, and (d) their

corresponding XRD patterns, respectively.
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Figure S8 (a) XPS full survey spectra of YS NiP,,S,/Ni@C/G, Ni,P/Ni@C/G and
NigSg/Ni@C/G, (b) Ni 2p in YS Ni,P/Ni@C/G, (c) Ni 2p in YS NigSg/Ni@C/G, (d) C
IsinYS Ni2P0.7580‘25/Ni@C/G.
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Figure S9 (a) N, adsorption-desorption isotherms and (b) pore-size distribution of YS
Ni,P/Ni@C/G, YS NigSg/Ni@C/G, and YS Ni,Pg75S0,5/Ni@C/G, respectively.



Figure S10 Surface wetting of H,O droplet on (a, b) YS NigSg/Ni@C/G, (c, d)
Y'S Ni,P/Ni@C/G, and (d, f) YS Ni,P75S¢.,5/N1@C/G, respectively.
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Figure S11 CV curves of YS Ni,P75S025/Ni@C/G at a current density of 0.2
mV S
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Figure S12 (a) Cycling stability at 100 mA g and (a) rate capabilities of YS
Ni,P0.58S0.42/Ni@C/G and Y'S Ni,Pg37S0.53/Ni@C/G for SIBs, respectively.
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Figure S13 Cycling stability at 100 mA g!' and rate capabilities of (a, b) Ni,P,
and (c, d) NigSg/NiS for SIBs, respectively.
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Figure S14 (a) Nyquist impedance plots of Ni,P and NigSg/NiS after 100 cycles, and
(b) the relationship plot between Z’ and w2
Table S2 Electrochemical impedance parameters of as-obtained Ni-based anodes for

SIBs from equivalent circuit fitting of experimental data.

Sample Cycle number Ry/Ohm R¢/Ohm R./Ohm
NisSg/NiS 100 cycle 5.7 109.3 319.0
YS NioSs/Ni@C/G 100 cycle 4.6 28.89 56.6
Ni P 100 cycle 5.4 107.8 208.1
YS Ni,P/Ni@C/G 100 cycle 4.7 253 36.9
YS NizPo75So2s/NI@C/G - ggh ycle 47 24.9 36.0
YS NiPossS0.4o/NI@C/G 190t cycle 4.8 26.7 37.6
YS NioPos780s/NI@C/G oo cycle 4.6 26.4 383

Equations (1) and (2):
D:% (1) Z'=R+o,0" )

Where R is the gas constant, T is the absolute temperature, 4 is the surface area of
the electrode, n is the number of transferred electrons per molecule, F is the Faraday
constant, ¢ is the molar concentration of Na* ions, R’ mainly involves the interface

impedance and charge transfer resistances for these electrodes, @ (v = 2 m f) is the

angular frequency, and o,, is the Warburg factor (Z' =< g,,0°!?), respectively.
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Figure S15 (a) CV scans of YS NiyP75S025/Ni@C/G at various rates and (b)

correspondingly fitted b-value at respective redox peaks for SIBs anode.

Figure S16 SEM images of (a, b) YS NiyPy75S02/Ni@C/G, (c) YS
NiyP 58S0.42/Ni@C/G and (d) YS NiyP37S0.53/Ni@C/G after 100 cycles at 100 mA g1,

respectively.
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Figure S17 (a) GCD curves, and (b) cycle performance at 2 A g™! of the AC cathode

for Na-storage.
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Figure S18 GDC curves of SICs with different mass ratios (anode: cathode, 1:1, 1:2,

1:3, and 1:4) at a current density of 0.5 A g-!.
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Figure S19 (a, c, e) Side-, and (b, d, f) top-views schematic model of the Ni (111),

NigSg (222), and the NigSg (222)-Ni, and (g) DOS curves for Ni (111), NiySg (222),
and the NigSg (222)/Ni.
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Figure S20 (a) The first charge-discharge profile and (b) its corresponding ex-situ

XRD patterns of YS NiyPy75S025/Ni@C/G anode in PIBs at the different voltage

platforms.



Table S3 Performance comparison of between NiyPj75S025/Ni@C/G and the

reported anode materials for PIBs

Ni;Py.75S0.25/Ni@C/G 372/200, 150 238/3200 This work
NiS,@C@C 303/100, 50 151/1610 Adv. Funct. Mater. 2019, 29,
1903454
ZnSe-FeSe,/RGO 363/100, 50 - J. Power Sources 2020, 455,
227937
Y-S NiS@C 364/200, 100 232/2000 J. Mater. Chem. 4, 2019, 7,
18932
mp-CoySg@C/rGO 408/100, 200 278/2000 Nano Res. 2020, 13, 802-809
Fe-Ni-P hollow 60/700, 200 46/2000 Chem. Eng. J. 2020, 390, 124515
nanoframes
FeS,@G@CNF 205/100, 200 171/1000 Small 2019, 15, 1804740
Hollow V,0;@C 330/500, 100 125/2000 J. Mater. Chem. A, 2020, 8,
sphere 13261
r-SnP@C 355/300, 100 258/1000 Carbon 2020, 168, 468-474
CoPcNPPCS 127/1000, 100 54/2000 Adv. Mater. 2018, 30, 1802310
TiON,/C 125/100, 200 72/1600 Chem. Eng. J. 2019, 369, 82§-
833
N/O Dual-dope hard 305/100, 100 223/2000 Adv. Sci. 2020, 7, 1902547
Carbon-800
SnO,@CF 399/150, 100 247/2000 Energy Environ. Sci., 2020,13,
571-578
NC@CoP/NC 279/100, 100 200/2000 Small 2020, 16, 1906566
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Figure S21 (a) CV scans of YS NiyP¢7550.25/Ni@C/G at various rates, and (b)

the shaded region shows the CV profile with the capacitive contribution at a

scan rate of 0.6 mV s! for PIBs anode.
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