Scalable Open-Air Deposition of Compact ETL TiO_x on Perovskite for

Fullerene-Free Solar Cells

Justin P. Chen,^{a,†} Florian Hilt,^{a,c,†} Nicholas Rolston, ^b Reinhold H. Dauskardt^{a*}

^a Department of Materials Science and Engineering Stanford University, Stanford, CA, 94305-2205, United States E-mail: rhd@stanford.edu

^b Department of Applied Physics Stanford University, Stanford, CA, 94305-2205, United States

° Now at Institut Photovoltaïque d'Île-de-France (IPVF), 91120 Palaiseau, France

[†]Equal Contribution

Keywords: Electron Transport Layer, Stability, Titanium Oxide, Perovskite Solar Cells, Chemical Vapor Deposition

Carrier N ₂ Flow Rate:	4 SLM
Precursor Concentration:	80 vol. % Ti(OEt) ₄ , 20 vol. % Toluene
Precursor Flow Rate:	2 μL/min
Evaporator Temperature:	250°C
Substrate Temperature:	100°C
Nozzle to Substrate Distance:	1 mm
Raster Line Speed:	10 cm/s
Raster Line Spacing:	0.5 mm
Number of Passes:	8

Table S1: OA-CVD deposition parameters for 70 nm thick TiO_{x} film.

Figure S1: XPS survey spectra of TiO_x film.

Figure S2: GIXRD of OA-CVD deposited TiO_x films on glass substrate as formed (100°C) and after annealing at 450°C for 30 minutes, compared to a reference spectrum for anatase TiO_2 (ICCD PDF-4+ Ref. No. 00-021-1272).

Figure S3: (a) Energy band diagram of complete device. (b) XPS measurement of TiO_x valence band maximum (VBM) energy difference, E_{Fermi} - E_{VBM} . (c) Tauc plot indirect band gap determination of TiO_x .

Figure S4: Current-voltage plots of glass/ITO/TiO_x test structure with different metal contacts.

V _{oc} (mV)	J _{sc} (mA·cm⁻²)	Fill Factor (%)	PCE (%)
1030 ± 37 (1080)	19.7 ± 0.8 (19.8)	60 ± 1.7 (62.4)	12.2 ± 0.6 (13.3)

Table S2: Device performance summary for N = 15 devices of ITO/NiO_x/CsFA/TiO_x/Al architecture with optimized 70 nm TiO_x thickness. Champion performance is indicated in parenthesis.

Figure S5: XRD spectra of glass/perovskite/TiO_x test structure with different TiO_x thicknesses. PbI₂ peaks are denoted with *.

Figure S6: Current-voltage plots of glass/ITO/TiO_x/AI test structure with different TiO_x thicknesses.

Figure S7: Forward ($J_{sc} \rightarrow V_{oc}$) and reverse ($V_{oc} \rightarrow J_{sc}$) current density vs. voltage (J-V) scans of TiO_x ETL devices on active area of 0.21cm².

Figure S8: Forward ($J_{sc} \rightarrow V_{oc}$) and reverse ($V_{oc} \rightarrow J_{sc}$) current density vs. voltage (J-V) scans of C₆₀/BCP ETL devices on active area of 0.21cm².

Film	Resistivity (Ω-cm)
TiO _X (OA-CVD) 100°C	3.1 × 10⁵
TiO ₂ (OA-CVD) 450°C	8.5 × 10³
TiO ₂ nanoparticles ¹	5.1 × 10 ³
SnO ₂ nanoparticles ²	2.4 × 10 ³

Table S3: Measured resistivities of inorganic ETL films prepared by various methods.

Figure S9: UV-Vis absorption spectroscopy of test structures deposited on glass before and after aging in 1-sun illumination (through glass side) for 24 hours at 40°C in air (45% RH): (a) bare perovskite (PVSK) (b) PVSK/C₆₀/BCP (c) PVSK/SnO₂ (d) TiO_x (100°C)/PVSK in NIP structure.

Figure S10: XRD (20- ω) measurements of glass/PVSK/TiO_x taken before and after aging in 1sun illumination (through glass side) for 24 hours at 40°C in air (45% RH). PbI₂ indexed reflections are denoted with *.

References

- B. L. Watson, N. Rolston, K. A. Bush, T. Leijtens, M. D. McGehee and R. H.
 Dauskardt, ACS Appl. Mater. Interfaces, 2016, 8, 25896–25904.
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang and J.
 You, *Nat. Energy*, 2017, 2, 16177.