Supporting Information

Trifunctional modification of individual bacterial cells for magnetassisted bioanode with high performance in microbial fuel cells

Yujing Jiang,^a Pingping Li,^a Yuanyuan Wang,^a Li-Ping Jiang,^a Rong-Bin Song,^{*ab} Jian-Rong Zhang^{*ac} and Jun-Jie Zhu^{*a}

^a State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry

and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China

E-mail: rbsong@nju.edu.cn; jrzhang@nju.edu.cn; jjzhu@nju.edu.cn

^b School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001,

P.R. China

E-mail: rbsong@zzu.edu.cn

^c School of Chemistry and Life Science, Nanjing University Jingling College, Nanjing

210089, P.R. China

Fig. S1 Growth curves of native *S. oneidensis* MR-1 (curve I), *S. oneidensis* MR-1@Au (curve II) and *S. oneidensis* MR-1@Au@Fe₃O₄ (curve III). Error bars represent standard error (s.e.) determined by three independent experiments.

Fig. S2 SEM images of *S. oneidensis* MR-1@Au with different Au content. (a) 0.5 mM L^{-1} , (b) 1 mM L^{-1} , (c) 1.5 mM L^{-1} , (d) 2 mM L^{-1} .

Fig. S3 CLSM images of *S. oneidensis* MR-1@Au with different Au content. (a) 0.5 mM L^{-1} , (b) 1 mM L^{-1} , (c) 1.5 mM L^{-1} , (d) 2 mM L^{-1} . The inset in image d is the corresponding high-magnification CLSM image.

Fig. S4 The hysteresis loops (a), saturation magnetization (b) and biomass (c) of *S. oneidensis* MR-1@Au@Fe₃O₄ at different Fe₃O₄ concentration (curve I, 0.5 g L⁻¹; curve II, 1 g L⁻¹; curve III, 1.5 g L⁻¹; curve IV, 2 g L⁻¹).

Fig. S5 Time profile of electricity generation of magnetic substrate electrode with Au and Fe_3O_4 .

Fig. S6 SEM image (a) and CLSM image (b) of S. oneidensis MR-1@Fe₃O₄ after modification.

Fig. S7 Cyclic voltammograms of *S. oneidensis* MR-1 (a), *S. oneidensis* MR-1@Au (c), *S. oneidensis* MR-1@Fe₃O₄ (e) and *S. oneidensis* MR-1@Au@Fe₃O₄ (g) biofilms at different scan rates (arrows showed scan rates at 5,10, 25, 50, 75 and 100 mV s⁻¹, respectively). Dependence of reduction current density (j_p) versus scan rate (v) on *S. oneidensis* MR-1 (b), *S. oneidensis* MR-1@Au (d), *S. oneidensis* MR-1@Fe₃O₄ (f) and *S. oneidensis* MR-1@Au@Fe₃O₄ (h) biofilms, separately; Inset: linear dependence of j_p versus $v^{1/2}$.

Electrode substrates	Anode materials	Microbe type	Power	
			density	Ref.
			(mW m ⁻²)	
Graphite felt	Fe ₃ O ₄	Mixed bacteria	18.28	1
Carbon felt	MWCNT-Au-Pt/	Gluconobacter oxydans	32.1	2
	osmium redox polymer			
Carbon cloth	BioAu/MWCNT	Mixed bacteria	178.34	3
			± 4.79	-
Carbon paper	Au	Mixed bacteria	461.6	4
Stainless	Activated carbon/	Mixed bacteria	809 ± 5	5
steel mesh	Fe ₃ O ₄			
Carbon paper	Fe ₃ O ₄ /CNT	Escherichia coli	830	6
Carbon paper	Fe ₃ O ₄ /CNT	Escherichia coli	865	7
Carbon paper	Graphene/Fe ₃ O ₄	Shewanella	891	8
		oneidensis		
Carbon paper	Au	Mixed bacteria	990	9
Stainless steel plates	Fe ₃ O ₄ /Fe ₂ O ₃	Geobacter	1500	10
		sulfurreducens		
Carbon felt	/	Polydopamine-coated	452.8	П
		Shewanella		
		xiamenensis		
Carbon cloth	/	Polypyrrole-coated	1479	12
		Shewanella		
		oneidensis		
Carbon felt	/	Carbon dots-coated	1697.9	13
		Shewanella		
		oneidensis		
Carbon cloth	/	Au and Fe ₃ O ₄ -coated	1792	
		Shewanella		I MIS
		oneidensis		work

Table S1. Comparison of the performance of previous MFCs using Au, Fe_3O_4 and their corresponding hybrids as anodes, as well as functionalized bacterial cells as bioanode.

References

- 1. B. Yu, Y. Li and L. Feng, J. Hazard. Mater., 2019, 377, 70-77.
- S. Aslan, P. Ó Conghaile, D. Leech, L. Gorton, S. Timur and U. Anik, *ChemistrySelect*, 2017, 2, 12034-12040.
- X. Wu, X. Xiong, G. Owens, G. Brunetti, J. Zhou, X. Yong, X. Xie, L. Zhang, P. Wei and H. Jia, *Bioresour. Technol.*, 2018, 270, 11-19.
- 4. F. A. a. Alatraktchi, Y. Zhang and I. Angelidaki, *Appl. Energy*, 2014, **116**, 216-222.
- X. Peng, H. Yu, X. Wang, Q. Zhou, S. Zhang, L. Geng, J. Sun and Z. Cai, *Bioresour. Technol.*, 2012, **121**, 450-453.
- 6. I. H. Park, M. Christy, P. Kim and K. S. Nahm, *Biosens. Bioelectron.*, 2014, 58, 75-80.
- I. H. Park, P. Kim, G. Gnana kumar and K. S. Nahm, *Appl. Biochem. Biotechnol.*, 2016, 179, 1170-1183.
- R.-B. Song, C.-e. Zhao, P.-P. Gai, D. Guo, L.-P. Jiang, Q. Zhang, J.-R. Zhang and J.-J. Zhu, *Chem. Asian J.*, 2017, **12**, 308-313.
- S. Mateo, P. Cañizares, M. A. Rodrigo and F. J. Fernandez-Morales, *Appl. Energy*, 2018, 225, 52-59.
- 10. X. Long, X. Cao, C. Wang, S. Liu and X. Li, J. Electroanal. Chem., 2019, 855, 113497.
- S.-R. Liu, L.-F. Cai, L.-Y. Wang, X.-F. Yi, Y.-J. Peng, N. He, X. Wu and Y.-P. Wang, *Chem. Commun.*, 2019, 55, 10535-10538.
- 12. R.-B. Song, Y. Wu, Z.-Q. Lin, J. Xie, C. H. Tan, J. S. C. Loo, B. Cao, J.-R. Zhang, J.-J. Zhu and Q. Zhang, *Angew. Chem. Int. Ed.*, 2017, **56**, 10516-10520.
- D. Guo, H.-F. Wei, R.-B. Song, J. Fu, X. Lu, R. Jelinek, Q. Min, J.-R. Zhang, Q. Zhang and J.-J. Zhu, *Nano Energy*, 2019, 63, 103875.