Supporting Information for

A two-dimensional conductive Mo-based covalent organic framework as an

efficient electrocatalyst for nitrogen fixation

Cong Wang,^a Ying-Nan Zhao,^b Chang-Yan Zhu,^a Min Zhang,^{*a} Yun Geng,^a Yang-Guang Li^b

and Zhong-Min Su*ac

^{a.} Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

^{b.} Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

^{c.} School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China.

*Emails: mzhang@nenu.edu.cn; zmsu@nenu.edu.cn.

Table of contents			
(Total Number of Pages: 12, Total Number of Figures: 5, Total Number of Tables: 4)			
1. Computational details.	Page S2		
2. The optimized lattice parameters, the TM-N bond lengths, and the total magnetic moment of the 2D TM-COFs. (Table S1)	Page S3		
3. The calculated adsorption energies and the charge transfer of embedding TM atoms on the 2D COF substrate. (Table S2)	Page S4		
4. The calculated Gibbs free energy changes of N_2 adsorption on the 2D TM-COFs with end-on and side-on patterns. (Table S3)	Page S5		
5. The calculated Gibbs free energy changes of NNH formation and NH ₃ formation on the 2D TM-COFs which capture N ₂ thermodynamically favorable ($\Delta G_{N2} < 0$). (Table S4)	Page S6		
6. The top and side views of the involved NRR species on the 2D Mo- COF along the distal, alternating, enzymatic pathways. (Fig. S1)	Page S7		
7. Gibbs free energy diagrams for N_2 reduction on the 2D Mo-COF and corresponding geometric structures of involved NRR species through three mixed mechanisms. (Fig. S2, S3)	Page S8,S9		
8. The top and side views of the obtained spin density of 2D Mo-COF before and after N_2 adsorption. (Fig. S4)	Page S10		
9. Variations of temperature and energy against time during AIMD simulation of 2D Mo-COF. (Fig. S5)	Page S11		
10. Supplementary references.	Page S12		

Computational details

The adsorption energy (E_{ads}) of these single TM (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Rh, Pd, Ag, W, Ir, Pt, and Au, respectively) atoms on the 2D COF substrate was defined as $E_{ads} = E_{TM-COF} - E_{TM} - E_{COF}$, where E_{TM-COF} , E_{TM} and E_{COF} are the total energies of the catalyst, the TM atoms, and COF substrate, respectively. A negative Eads value suggests favorable adsorption. The calculation of the Gibbs free energy diagrams was performed by using the concept of computational hydrogen electrode (CHE) model.^{1,2} Accordingly, the Gibbs free energy change (ΔG) can be calculated according to ΔG = ΔE + ΔE_{ZPE} - $T\Delta S$ + ΔG_{pH} + $\Delta G_{U}.$ In this equation, ΔE is the reaction energy directly obtained from DFT calculations. ΔE_{ZPE} is the zero-point energy correction, T is the temperature, and ΔS is the entropy change.

 $\Delta E_{ZPE} = \sum_{i=1}^{n} h v_i$, where *h* is the Planck constant, *i* is the frequency number, v_i is the vibrational frequency with unit cm⁻¹. The entropies of gas-phase molecules are looked up in the NIST database,³ and the vibrational entropy for adsorbed species can be

$$S = k_B \left[\sum_{i} ln(\frac{1}{1 - e^{-\frac{hv_i}{k_B T}}}) + \sum_{i} \frac{hv_i}{k_B T} \frac{1}{(e^{hv_i/k_B T} - 1)} + 1 \right]$$

obtained from

. ΔG_{pH} is the free energy correction of pH, which can be calculated by $\Delta G_{pH} = 2.303 k_B T pH$, and the pH value is equal to zero in this work. ΔG_U is the free energy contribution related to electrode potential U.

The limiting potential (U_L) is the required applied potential to make every elementary step exergonic, which is widely accepted as a descriptor of NRR activity.⁴ This value can be deduced by the following equation as U_L = - $\Delta G_{PDS}/e,$ in which ΔG_{PDS} represents the maximum of the free energy change of each elementary step in the NRR, leading to the potential determining step (PDS). The overpotential (η) is a vital indicator for electrocatalytic performance,⁵ and it is investigated according to $\eta =$ U_{equ} - U_L . Here, U_{equ} is the equilibrium potential (- 0.12 V for NRR).

TM-COF	a = b/Å	$d_{TM-N}/{ m \AA}$	Mag/μ_B
Sc	22.75746	2.05	0.61
Ti	22.70090	2.01	1.40
V	22.65820	1.98	2.50
Cr	22.63433	1.96	3.43
Mn	22.59861	1.94	2.83
Fe	22.55941	1.92	1.53
Co	22.53749	1.90	0.54
Ni	22.55798	1.90	0.00
Cu	22.61629	1.96	0.94
Zn	22.67382	2.00	0.00
Nb	22.74463	2.04	1.92
Мо	22.71849	2.03	3.10
Ru	22.65293	1.98	0.60
Rh	22.62360	1.96	-0.51
Pd	22.62329	1.98	0.00
Ag	22.73750	2.05	0.92
W	22.70625	2.02	3.00
Ir	22.62956	1.97	0.51
Pt	22.62878	1.98	0.00
Au	22.63724	2.00	0.59

Table S1. The optimized lattice parameters, the TM-N bond lengths (d_{TM-N}), and the total magnetic moment (Mag) of the 2D TM-COFs using the PBE functional (c = 20 Å, $\alpha = \beta = \gamma = 90^{\circ}$).

TM-COF	E _{ads}	Q _{TM}
Sc	-11.06	1.64
Ti	-11.42	1.41
V	-11.05	1.38
Cr	-9.06	1.28
Mn	-9.74	1.26
Fe	-9.58	1.06
Со	-10.41	0.77
Ni	-11.16	0.78
Cu	-8.15	0.94
Zn	-6.54	1.16
Nb	-10.47	1.72
Мо	-9.57	1.40
Ru	-10.61	0.98
Rh	-10.70	0.66
Pd	-8.68	0.76
Ag	-5.60	0.95
W	-11.59	1.57
Ir	-11.75	0.82
Pt	-10.87	0.88
Au	-5.77	1.12

Table S2. The calculated adsorption energies (E_{ads} , eV) and the charge transfer (Q_{TM} , |e|) of embedding TM atom on the 2D COF substrate.

TM-COF	End-on	Side-on
Sc	-0.66	-0.53
Ti	-0.58	-0.20
V	-0.30	0.35
Cr	-0.37	0.18
Mn	0.59	0.24
Fe	-0.22	-0.31
Со	0.34	0.23
Ni	0.98	1.01
Cu	-0.26	0.36
Zn	0.28	0.29
Nb	-1.19	-1.08
Мо	-0.77	-0.26
Ru	-0.98	0.32
Rh	-0.18	-0.19
Pd	-0.25	-0.28
Ag	0.30	0.28
W	-0.95	-0.52
Ir	-0.18	-0.14
Pt	-0.26	-0.26
Au	-0.30	-0.33

Table S3. The calculated Gibbs free energy changes (ΔG , eV) of N₂ adsorption on the 2D TM-COFs with end-on and side-on patterns.

TM-COF	$\Delta G_{e\text{-NNH-formation}}$	$\Delta G_{s-NNH-formation}$	$\Delta G_{\rm NH3}$ -formation
Sc	1.13	0.67	0.16
Ti	0.81	0.53	0.11
V	0.90	-	-0.33
Cr	0.64	-	-0.24
Fe	1.20	1.29	-0.87
Cu	2.74	-	-2.09
Nb	0.35	0.18	0.70
Mo	0.28	0.37	0.25
Ru	1.33	-	-0.72
Rh	1.28	1.37	-0.78
Pd	2.58	2.61	-2.52
W	0.08	-0.03	0.75
Ir	1.36	1.33	-0.64
Pt	2.16	2.18	-2.18
Au	2.13	2.19	-2.01

Table S4. The calculated Gibbs free energy changes (ΔG , eV) of NNH formation and NH₃ formation on the 2D TM-COFs which capture N₂ thermodynamically favorable ($\Delta G_{N2} < 0$). The decisive largest ΔG values are marked in red typeface.

Fig. S1 The top and side views of the involved NRR species on the 2D Mo-COF along the distal, alternating, enzymatic pathways.

Fig. S2 Gibbs free energy diagrams for N_2 reduction on the 2D Mo-COF through (a) mixed 1, (b) mixed 2, and (c) mixed 3 mechanisms at different applied potentials.

Fig. S3 The top and side views of the involved NRR species on the 2D Mo-COF along three mixed pathways.

Fig. S4 The top and side views of the obtained spin density of 2D Mo-COF (a) before and (b) after N₂ adsorption, in which the level of the isosurface is set to be 0.002 e·Å⁻³, and positive and negative charges are shown in yellow and cyan, respectively.

Fig. S5 Variations of temperature and energy against time of 2D Mo-COF during AIMD simulation. The simulation was run for 10 ps with time step of 2 fs at 500 K.

Supplementary references

1 T. Lu and F. W. Chen, J. Mol. Model., 2013, 19, 5387-5395.

2 G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.

3 Computational Chemistry Comparison and Benchmark Data-base. http://cccbdb.nist.gov/.

4 J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Nørskov, *ChemSusChem*, 2015, **8**, 2180-2186.

5 C. Wang, C. Y. Zhu, M. Zhang, Y. Geng, Y. G. Li and Z. M. Su, *J. Mater. Chem. A*, 2020, **8**, 14807-14814.