Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Boosting the Sodium Storage of 1T/2H MoS₂@SnO₂

Heterostructure via Fast Surface Redox Reaction

Figure S1. XRD pattern of Li⁺ and Sn²⁺ intercalted MoS2. The XRD peaks corresponding to (001) and (002) reflections were found, suggesting there is a water bilayer in the as-deposited film.

Figure S2. Raman spectra of 2H MoS₂@SnO₂

Figure S3. SEM images of raw MoS_2 and $1T/2H MoS_2@SnO_2$

Figure S4. a) XRD patterns of 2H $MoS_2@SnO_2$ and 1T/2H $MoS_2@SnO_2$. b-d) TEM images of 2H $MoS_2@SnO_2$, the inset of d shows the corresponding SEAD pattern. e) The HRTEM images of 2H $MoS_2@SnO_2$, and their corresponding profile plots of the calibration for measuring the spacings in panel of SnO_2 and 2H- MoS_2 .

Lsec: 8.9 16 Cnts 6.490 keV Det: Octane Plus

Figure S5. The energy dispersive X-ray spectrum of 1T/2H MoS₂@SnO₂.

Figure S6. TGA curves of 1T/2H MoS₂/SnO₂ composite (without graphene) and bulk MoS₂. Assuming the weigh percent of MoS₂ and SnO₂ are x, y respectively. The mass ratio of MoS₂ and SnO₂ is calculated to be 40.9:59.1 based on the following equations: x+y=1 and 77%x+y=90.6%.

Figure S7. High resolution XPS spectra of Mo 3d and S 2p in 2H $MoS_2@SnO_2$ and 1T/2H $MoS_2@SnO_2$, respectively.

Figure S8. CV curves of raw MoS₂ for the initial 5 cycles.

Figure S9. Cycling performance and CE of the exfoliated MoS₂.

Figure S10. a) SEM images of a) initial and b) cycled anode.

Figure S11. Typical E-t curves of $1T/2H MoS_2@SnO_2$ for a single GITT step during charge and discharge.

Figure S12. a) XRD pattern and b) SEM image of NVP

Figure S13. a) Schematic illustration of full-cell test. b) cycling performance of the full cell at 0.5 A g^{-1} . c) charge and discharge curves of 1T/2H MoS2@SnO2//NVP d) small lamp was lighten by full cell.

Material	Preparation method	Cyclic performance	Rate performance	Ref.
1T/ 2 H	Charge-induced	537mAh g ⁻¹	262mAh g ⁻¹	This
	-	at 0.1A g ⁻¹	at 2A g ⁻¹	work
MoS2@SnO2	self-assembly	after 100 cycle	after 500 cycles	
Dual phase-	Solvothermal	300mAh g ⁻¹	220mAh g ⁻¹	
		at 0.5Ag-1	at 2.0 A g ⁻¹	\mathbf{S}^1
		after 200 cycles	after 500 cycles	
MoS2				
1T MoS ₂ /CF	Solvothermal	313mAh g ⁻¹	175mAh g ⁻¹	
		at 0.05 A g^{-1}	at 2.0 A g ⁻¹	S^2
		after 200 cycles	after 200 cycles	
MoS _{2x} Se _x /GF	Hydrothermal and calcination	165mAh g ⁻¹	175mAh g-1	
		at 0.2 A g ⁻¹	at 2.0 A g-1	S ³
		after 500 cycles	after 500 cycles	
MoS2@SnO2@C	Hydrothermal	396mA h g ⁻¹	230mAh g ⁻¹	
		at 0.1 A g^{-1}	at 1.0 A g-1	S^4
		after 150 cycles	after 450 cycles	
S/MoS ₂	Calcination	413.2mA h g ⁻¹	302mAh g ⁻¹	
		at 0.1 A g ⁻¹	at 2.0 A g-1	S ⁵
		after 60 cycles	after 300 cycles	
MoS ₂ /Graphene	Ball-milling	432mA h g ⁻¹	421mAh g ⁻¹	
		at 0.1 A g ⁻¹	at 0.3 A g ⁻¹	S^6
		after 60 cycles	after 300 cycles	
1T MoS2	Li intercalated	450mA h g ⁻¹	324mAh g ⁻¹	
	exfoliation	at 0.05 A g^{-1}	at 1.0 A g ⁻¹	\mathbf{S}^7
		after 40 cycles	after 200 cycles	
G-MoS ₂	Vapor synthesis	312mA h g ⁻¹	175mAh g ⁻¹	
		at 0.5 A g^{-1}	at 2.0 A g ⁻¹	S^8
		after 300 cycles	after 400 cycles	

Table S1. Comparation of the achievement on SIB anode of the published literature against the current work.

Reference

- J. Wu, J. Liu, J. Cui, S. Yao, M. Ihsan-Ul-Haq, N. Mubarak, E. Quattrocchi, F. Ciucci and J.-K. Kim, J. Mater Chem. A, 2020, 8, 2114-2122.
- X. Geng, Y. Jiao, Y. Han, A. Mukhopadhyay, L. Yang and H. Zhu, *Adv. Funct. Mater*, 2017, 27,170998.
- G. Jia, D. Chao, N. H. Tiep, Z. Zhang and H. J. Fan, *Energy Storage Materials*, 2018, 14, 136-142.
- 4. Z. Chen, D. Yin and M. Zhang, *Small*, 2018, **14**, e1703818.
- Z. Xu, K. Yao, Z. Li, L. Fu, H. Fu, J. Li, L. Cao and J. Huang, J. Mater Chem. A, 2018, 6, 10535-10542.
- 6. D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang and H. Wang, Adv. Energy Mater, 2018, 8.
- D. Sun, D. Huang, H. Wang, G. Xu, X. Zhang, R. Zhang, Y. Tang, D. Abd Ei-Hady, W. Alshitari,
 A. Saad Al-Bogami, K. Amine and M. Shao, *Nano Energy*, 2019, 61, 361-369.
- K. Yao, Z. Xu, Z. Li, X. Liu, X. Shen, L. Cao and J. Huang, *ChemSusChem*, 2018, 11, 2130-2137.