Supporting information for

Unraveling the Quantum Dynamics Origin of High Photocatalytic Activity in Nitrogen Doped Anatase TiO₂: Time-Domain Ab Initio Study

Yating Yang¹, Zhaosheng Zhang^{1,2}, Wei-Hai Fang¹, S. Fernandez-Alberti³, Run Long^{1†}

¹College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China

²College of Chemistry & Environmental Science, Hebei University, Baoding,

071002, People's Republic of China

³Departamento de Ciencia y Tecnologia, Universidad Nacional de

Quilmes/CONICET, B1876BXD Bernal, Argentina

[†] Corresponding author, Email: runlong@bnu.edu.cn

S1. State-to-state transition rate and the coupled kinetics equations.

Figure S1 shows the time evolution population of the first excited state (conduction band minimum, CBM) and trap states for the transition of pairs of electronic states in the pristine TiO₂, N(0) and N(-1) systems. Fitting the curves to an exponent: $P(t) = exp^{\frac{1}{10}}(-\frac{t}{\tau})$, gives the relaxation time, τ . The inverse value of τ corresponds to the state-to-state transition rates $k_{(cbm \rightarrow vbm)}$, $k_{(cbm \rightarrow etrap)}$, $k_{(etrap \rightarrow vbm)}$ and $k_{(vbm \rightarrow htrap)}$ for the pairs of electronic states, which are labelled in **Figure S1**, **Tables 1** and **S1**. By solving the coupled kinetic equations with the obtained rate constants, we obtained the charge trapping and recombination dynamics, Figure 7 in main text. **Figures S2-S3** give the basis set. The [*ES*], [*GS*] and [*trap*] correspond to the CBM, valence band maximum (VBM) and the electron or hole trap states.

Figure S1. Time evolution of the considered pair population of (a) pristine anatase TiO_2 , (b) neutral N-doped TiO_2 , and (c) negatively charged N-doped TiO_2 . Black, red, green and blue curves in **Figure S1(b)** stand for population of VBM-CBM (spin-up), VBM-etrap state (spin-down), VBM-CBM (spin-down) and etrap state-CBM (spin-down) in neutral N-doped TiO_2 . It is similar in **Figure S1(c)**. The calculated rate constants are summarized in **Table 1** and **Table S1**.

(1) N(0) system: electron trap-assisted electron-hole recombination process.

$$\frac{d[ES]}{dt} = -(k_{cbm \to etrap} + k_{cbm \to vbm})[ES]$$

$$\frac{d[trap]}{dt} = k_{cbm \to etrap}[ES] - k_{etrap \to vbm}[trap]$$

$$\frac{d[GS]}{dt} = k_{cbm \to vbm}[ES] + k_{etrap \to vbm}[trap]$$

The solutions of above equations:

$$[ES] = e^{-(k_{cbm \to etrap} + k_{cbm \to vbm}) * t}$$

 $[trap] = \frac{k_{cbm \to etrap}}{k_{cbm \to etrap} + k_{cbm \to vbm} - k_{etrap \to vbm}} \left[e^{-k_{etrap \to vbm} * t} - e^{-(k_{cbm \to etrap} + k_{cbm \to vbm}) * t} \right]$

$$[GS] = 1 - [ES] - [trap]$$

Figure S2. Schematic diagram for electron trap-assisted electron-hole recombination in the N(0) system.

(2) N(-1) system: hole trap-assisted electron-hole recombination process,

$$\frac{d[ES]}{dt} = -(k_{htrap \to vbm} + k_{cbm \to vbm})[ES]$$

$$\frac{d[trap]}{dt} = k_{htrap \to vbm}[ES] - k_{cbm \to htrap}[trap]$$

$$\frac{d[GS]}{dt} = k_{cbm \to vbm}[ES] + k_{cbm \to htrap}[trap]$$

The solutions of above equations:

$$[ES] = e^{-(k_{htrap \to vbm} + k_{cbm \to vbm}) * t}$$

$$[trap] = \frac{k_{htrap \to vbm}}{k_{htrap \to vbm} + k_{cbm \to vbm} - k_{cbm \to htrap}} \left[e^{-k_{cbm \to htrap} * t} - e^{-\left(k_{htrap \to vbm} + k_{cbm \to vbm}\right) * t} \right]$$

[GS] = 1 - [ES] - [trap]

15 - ---

Figure S3. Schematic diagram for hole trap-assisted electron-hole recombination in the N(-1) system.

S2. Charge density of spin-up channel for pristine anatase TiO₂, TiO₂ doping with neutral and negatively charged N.

Figure S4. Spin-up charge densities of VBM, trap-state and CBM for (**a**) anatase TiO_2 , (**b**) N(0) and (**c**) N(-1). The charge densities of pristine and N(-1) systems remain unchanged to those in the spin-down channel shown in Figure 4 in the main text. The cancellation of electron trap state in the spin-up channel of N(0) system delays electron-hole recombination compared to that in the spin-down channel.

S3. Characteristics in neutral N-doped TiO₂ in the spin-up channel.

Figure S5. (a) Time evolution of the VBM and CBM energies, **(b)** Pure-dephasing functions and inset of unnormalized ACF, **(c)** electron-hole recombination dynamics and **(d)** spectral density of the VBM and CBM for neutral N-doped TiO_2 in the spin-up channel.

Table S1. Bandgaps, average absolute non-adiabatic coupling (NAC), pure-dephasing time, and quantum transition rate constant for CBM-VBM transition of neutral N-doped anatase TiO_2 in the spin-up channel.

	Bandgap	NAC	Dephasing	Rate
	(eV)	(meV)	(fs)	(ns ⁻¹)
$N(0)_{CBM \rightarrow VBM}$	2.92	1.79	8.1	5.87