Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection

Thi My Huyen Nguyena, Sangmo Kima, Chung Wung Barka

^aDepartment of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea. E-mail: bark@gachon.ac.kr

Calculation of the trap density

The trap densities of the electron/hole-only device were calculated using the following equation:

$$n_{traps} = \frac{2\varepsilon_0 \varepsilon}{q \, V_{TFL} L^2}$$

where ε_0 is the vacuum permittivity ($^{\varepsilon_0}$ = 8.8542 × 10⁻¹²), ε is the dielectric constant of perovskite (ε =25), q is, q is the elementary charge (q= 1.6022 × 10⁻¹⁹ C), L is the thickness of perovskite (L= 580 nm) and V_{TFL} is the trap-filled limit voltages of the electron/hole-only device which determined by I-V curve in dark condition. V_{TFL} of the hole-only device and electron-only device were 0.195 V and 0.45 V, respectively. According to the above values, the hole and trap densities (n_{traps}) of devices were estimated equal to 1.6 × 10¹⁵ cm⁻³ and 3.6 × 10¹⁵ cm⁻³.

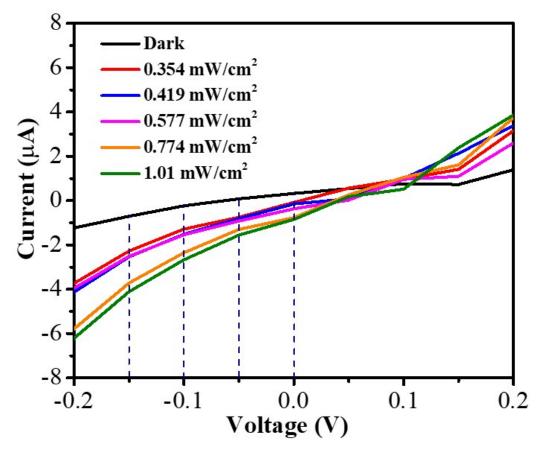


Fig. S1 *I-V* characteristics of the photodetector measured under dark and different light intensities at 254 nm light and 0 V bias voltage.

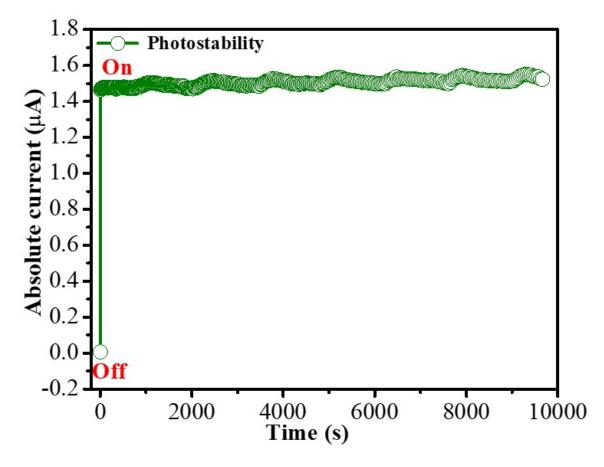


Fig. S2 The photostability of photodetector measured under 254nm-UVC light illumination.

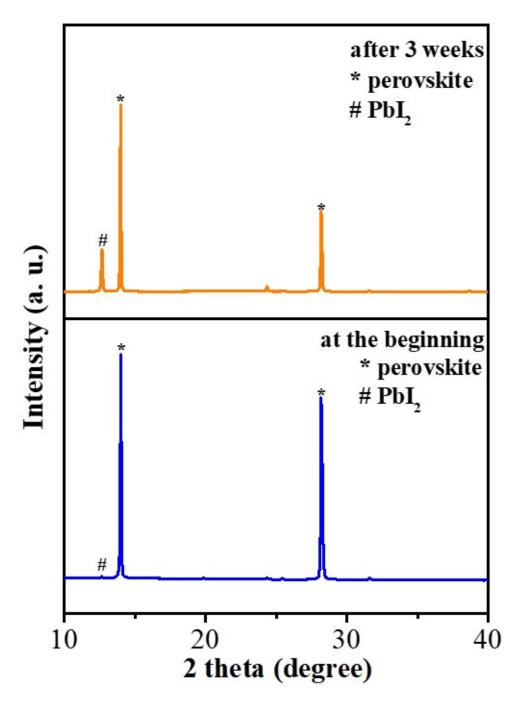


Fig. S3 The XRD patterns of perovskite film on quartz at the beginning and after 3 weeks

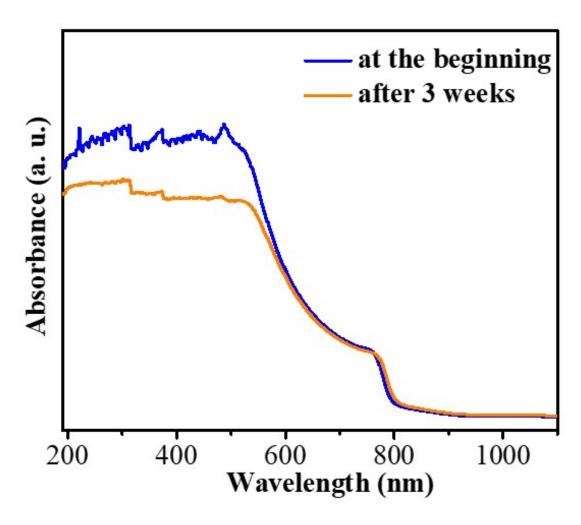


Fig. S4 The UV-vis spectra of perovskite film on quartz at the beginning and after 3 weeks

Table S1. The performance parameters of the photodetector with different bias voltages

Light intensity	Voltage	Responsivity	Detectivity	EQE
(mW/cm ²)	(V)	(mA/W)	(Jones)	(%)
0.774	0	52.36	$4.23x10^{11}$	25.61
0.774	-0.05	50.07	$4.37x10^{10}$	24.49
0.774	-0.1	51.39	$2.33x10^{10}$	25.13
0.774	-0.15	57.28	1.72×10^{10}	28.01
0.774	-0.2	76.28	1.73×10^{10}	37.31

Table S2. The performance parameters of the photodetector with different light intensities

Light intensity	Voltage	Responsivity	Detectivity	EQE
(mW/cm ²)	(V)	(mA/W)	(Jones)	(%)
1.01	0	44.63	3.94x10 ¹¹	21.83
0.774	0	52.68	4.65x10 ¹¹	25.76
0.577	0	47.78	4.22x10 ¹¹	23.37
0.419	0	42.72	3.77×10^{11}	20.89
0.354	0	44.08	3.89×10^{11}	21.56