Supplementary Information

Chemicals and materials

Ti₃AlC₂ powders (400 mesh) were purchased from 11 Technology Co., Ltd. Ammonium molybdate ($H_{32}Mo_7N_6O_{28}$, Alfa Aesar, 99%), thiourea (CH₄N₂S, Sigma-Aldrich, \geq 99.0%), glucose (C₆H₁₂O₆, Aladdin, 99.5%), absolute ethanol (C₂H₅OH, \geq 99.7%), acetone (CH₃COCH₃, \geq 99.5%), tetramethylammonium hydroxide (C₄H₁₃NO, TMAOH, Aladdin, 25%), sulfuric acid (H₂SO₄, 95% ~ 98%), hydrochloric acid (HCl, 36% ~ 38%), sodium hydroxide (NaOH, Aladdin, 96%), potassium hydroxide (KOH, Aladdin, 90%), phosphate buffer (pH=7.0, Macklin), Ar gas (99.99%) were obtained from Sinopharm Chemical Reagent Co., Ltd. Reagent 5% Nafion solution was purchased from DuPont. Deionized water was used throughout the whole experiment. All chemicals were used as received without further purification.

Preparation of fluorine-free $Ti_3C_2T_X$

The fluorine-free $Ti_3C_2T_x$ (Na- $Ti_3C_2T_x$) was prepared by a NaOH etching method as previously reported.⁴⁷ In short, 80 mg of Ti_3AlC_2 powders were immersed in a 27.5 M NaOH solution under argon (Ar) atmosphere. The mixture was then hydrothermally treated at 270 °C for 12 hours. Finally, the result suspension was filtered with deionized water washing for three times. The obtained powder was dried at 60°C for 12 hours.

Preparation of D-Na-Ti₃C₂T_X

A 50 mg portion of Na-Ti₃C₂T_x was dispersed into 10 mL of TMAOH. The solution was stirred at room temperature for 24 hours and then sonicated for D (D=0, 2, 5, 10 and 15) hours (5-Na-Ti₃C₂T_x and I-Na-Ti₃C₂T_x are the same). Finally, the obtained suspension was centrifugated at 6000 rpm for 30 minutes and dried in a freeze-drying vacuum.

Preparation of D-Na-Ti₃C₂T_X/MoS₂

38.3 mg of ammonium molybdate, 500 mg of thiourea, 50 mg of glucose and 20 mg D-Na-Ti₃C₂T_x were dissolved in 30 mL hydrochloric acid solution. Then, the mixed solution was transferred into an 50 mL Teflon-lined stainless steel autoclave and heated at 200 °C for 12 hours. The black powders were collected by centrifugation, washed 3 times with deionized water and acetone and dried under vacuum at 60 °C.

Characterizations

X-ray diffraction (XRD) patterns of the as-prepared powders were obtained with a Rigaku Ultima IV Powder Diffractometer (Cu K α radiation, λ = 0.15406 nm, sweeping speed: 5° min⁻¹). Raman spectra were recorded on a Renishaw inVia reflex spectrometer using laser excitation of 532 nm. XPS spectra were used to analyze the valence states of Mo, S, Ti and other elements with Kratos Axis Ultra^{DLD} spectrometer. The morphologies and microstructures of the as-prepared samples were characterized by scanning electron microscopy (SEM, 5 kV for morphology observation, Tescan, Czech) and transmission electron microscopy (TEM, 200 kV, FEI, America).

Electrode preparation

The catalyst powders (4 mg) were dispersed in a mixture of 10 μ L Nafion solution and 1 mL water-ethanol solution (3:1 by volume) to form a suspension. Then the suspension was sonicated at room temperature for 30 minutes to form a uniform catalyst electrode slurry. After that, 10 μ L slurry was dropped on a glassy carbon electrode (GC) with a diameter of 5 mm, followed by natural drying (10 hours) at room temperature to obtain a HER electrode. The loading of the catalyst on the surface of the glassy carbon electrode was about 0.2 mg cm⁻².

COMMUNICATION

Electrochemical measurement

All electrochemical measurements were performed on an electrochemical workstation (Biologic VMP3) at room temperature and atmospheric conditions. Under acidic conditions, 0.5 M H₂SO₄ solution was used as the electrolyte solution, graphite rods (99.9995%, Alfa Aesar) were used as the counter electrodes, and Ag/AgCl electrodes were employed as reference electrodes, based on the Nernst equation *E* (RHE) = *E* (Ag/AgCl) + 0.059 pH + 0.198 V. Under neutral conditions, phosphate buffer solution (PBS) was the electrolyte solution, graphite rods (99.9995%, Alfa Aesar) were the counter electrodes, and Saturated Calomel Electrode (SCE) were the reference electrodes, based on the Nernst equation *E* (RHE) = *E* (SCE) + 0.059 pH + 0.241 V. Under alkaline conditions, the electrolyte was 1M KOH solution, graphite rods (99.9995%, Alfa Aesar) were the counter electrodes, and Hg/HgO were the reference electrodes, based on the Nernst equation *E* (RHE) = *E* (Hg/HgO) + 0.059 pH + 0.098 V. All potentials were referenced to the reversible hydrogen electrode potential in this work.

The polarization curves of HER were obtained by linear sweep voltammetry (LSV) with a scan rate of 2 mV s⁻¹ and a scan-interval of 0.2 to -0.6 V. Electrochemical impedance spectroscopy (EIS) measurements were carried out at an overpotential of 0.3 V and 0 V from 10^5 to 10^{-1} Hz with an amplitude of 10 mV AC impedance. To measure the double-layer capacitance (C_{dl}), the cyclic voltammetry (CV) were recorded from 0.2 to 0.4 V at scan rates of 2, 5, 10, 20 and 40 mV s⁻¹. The HER stability of the catalyst was investigated with CV cycle method and chronopotentiometry experiment. The CV cycle tests range were 0.2 to -0.6 V and the sweep speed was 100 mV s⁻¹. The current density during the chronopotentiometry experiments was -100 mA cm⁻² and the test time were 20 hours.

Table S1				
Catalyst	Electrolyte	Overpotential	Tafel slope	Reference s
Few-layer fluorine-free Ti ₃ C ₂ T _x /MoS ₂	0.5 M H ₂ SO ₄	-139 mV	78 mV dec⁻¹	
	0.5 M PBS	-299 mV	178 mV dec ⁻¹	This work
	1 M KOH	-217 mV	107 mV dec ⁻¹	
MoS ₂	0.5 M H ₂ SO ₄	-269 mV	66.7 mV dec ⁻¹	21
Lamellar MoS ₂	0.5 M H ₂ SO ₄	-461 mV	142.6 mV dec ⁻¹	33
Oxygen-functionalized $Ti_3C_2T_X$	0.5 M H ₂ SO ₄	-217 mV	88.5 mV dec ⁻¹	37
Ti ₃ C ₂ T _x /MoS ₂	0.5 M H ₂ SO ₄	-280 mV	68 mV dec ⁻¹	22
"Nanoroll" like Ti ₃ C ₂ T _X /MoS ₂	0.5 M H ₂ SO ₄	-152 mV	70 mV dec ⁻¹	23
MoS ₂ -12h/CB-12h	0.1 M HClO ₄	~-260 mV	79.6 mV dec ⁻¹	27
MoS ₂ /C	0.5 M PBS	-310 mV	94.4 mV dec ⁻¹	24
amorphous MoS ₂ /FTO	alkaline solution	-540 mV	/	25

Fig. S1 XRD patterns of MAX, F-Ti_3C_2T_{X} and Na-Ti_3C_2T_{X}.

Fig. S2 XPS spectra of (a) $F-Ti_3C_2T_x$ and $Na-Ti_3C_2T_x$, (b) $I-Na-Ti_3C_2T_x/MoS_2$ hybrid.

Fig. S3 (a) SEM image of MAX, (b-c) SEM and TEM images of $F-Ti_3C_2T_x$, (d) TEM image of $Na-Ti_3C_2T_x$.

Fig. S4 CV curves of (a) MoS_2 , (b) $F-Ti_3C_2T_X/MoS_2$, (c) $I-Na-Ti_3C_2T_X/MoS_2$.

Fig. S5 (a-b) SEM and (c-d) TEM images of 5-Na-Ti₃C₂T_x/MoS₂ after the reaction for 20 hours, (e-g) corresponding elemental mappings of Mo, S and Ti of (c).

Fig. S6 SEM and TEM images of (a, e) 0-Na-Ti₃C₂T_x/MoS₂, (b, f) 2-Na-Ti₃C₂T_x/MoS₂, (c, g) 10-Na-Ti₃C₂T_x/MoS₂, and (d, h) 15-Na-Ti₃C₂T_x/MoS₂ with different lateral sizes.

Fig. S7 (a) Polarization curves and (b) Tafel plots of 0-Na-Ti₃C₂T_x/MoS₂, 2-Na-Ti₃C₂T_x/MoS₂, 5-Na-Ti₃C₂T_x/MoS₂, 10-Na-Ti₃C₂T_x/MoS₂ and 15-Na-Ti₃C₂T_x/MoS₂, (c) Polarization curves were recorded for 10-Na-Ti₃C₂T_x/MoS₂ before and after 3000 potential cycles, (d) Time-dependent current density curve of 10-Na-Ti₃C₂T_x/MoS₂ under a static current density of -100 mA cm⁻² for 20h. All tests were performed in 0.5 M H₂SO₄ solution.