Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Inverse-spinel Mg₂MnO₄ cathode for high-performance and flexible aqueous zinc-ion battery

Xuming Yuan^{†a,} Tianjiang Sun^{†a,} Shibing Zheng^{a,} Junquan Bao^a, Jing Liang^a, Zhanliang Tao^{*a} ^aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

^{*†*}*These authors contributed equally to this work.*

*Corresponding author Zhanliang Tao E-mail: taozhl@nankai.edu.cn

Figure S1. The SEM-EDS of as-synthesized Mg_2MnO_4 sample.

Figure S2. HRTEM image of the as-obtained Mg_2MnO_4 sample.

Figure S3. XRD pattern of the as-obtained $MgMn_2O_4$ sample.

Figure S4. SEM images of the as-obtained MgMn₂O₄.

Figure S5. A comparison of average discharge potential, specific capacity and energy density between this work and reported materials.

Figure S6. a) The charge-discharge curves of $Zn//MgMn_2O_4$ battery. b) Rate capacity of $Zn//MgMn_2O_4$ battery. c) Cycling stability of $Zn//MgMn_2O_4$ battery.

Figure S7. Electrochemical stability of the full battery surveyed by self-discharge experiments. Specifically, the full battery was fully charged to 1.9 V, then fully discharged to 0.4 V after rest for 24 h.

Figure S8. a~b) The ex-situ SEM patterns of Mg₂MnO₄ electrodes. a) Discharge to 0.4 V; b) Charge to 1.9 V.

Figure S9. Typical Nyquist plots for Zn//Mg₂MnO₄ battery at different state.

Figure S10. a^b) The ex-situ SEM patterns of Zn anode. a) Discharge to 0.4 V; b) Charge to 1.9 V.

Figure S11. a~b) The ex-situ XRD patterns of Zn anode. a) Discharge to 0.4 V; b) Charge to 1.9 V.

Figure S12. The structural formula for the polymerization.

Figure S13. The ATR-FTIR spectra of AM, AMPS, and P-APSA sample.

Figure S14. The stretching test of P-APSA sample.

Figure S15. Reversible Zn²⁺ plating/stripping behaviour on SS

Figure S16. Cycling stability of Zn//P-APSA//Zn symmetric cell.

Figure S17. The CV curves of Zn//P-APSA//Mg₂MnO₄ battery.

Figure S18. The charge-discharge curves of Zn//P-APSA//Mg₂MnO₄ battery.

Figure S19. Typical Nyquist plots for Zn//P-APSA//Mg₂MnO₄ battery.

Figure S20. Typical Nyquist plots for Zn//P-APSA//Mg₂MnO₄ battery after five cycles.

Figure S21. The charge-discharge curve of two batteries connected in series.

Figure S22. The discharge curves of single battery and two batteries connected in parallel.

Table S1 The SEM-EDS of as-synthesis Mg_2MnO_4 sample.

Technology	SEM-EDS ICP-OES			
Element	wt%	wt% sigma	Atom%	wt%
0	36.77	0.29	55.06	
Mg	31.62	0.25	31.16	35.907%
Mn	31.61	0.27	13.78	36.105%
Mole ration of Mn:Mg		0.442:1		0.445:1

Table S2 A comparison of electrochemical performance between this work and reported materials.

Electrode	Electrolyte	Specific capacity	Cycling stability	Ref
ZnMn₂O₄@C	3 M Zn(CF ₃ SO ₃) ₂	150 mAh g 1 at 50 mA g 1	94% after 500 at 500 cycles mA g ⁻¹	1
ZnMn₂O₄@ N-GO	1M ZnSO ₄ + $0.05M$ MnSO ₄	221 mAh g $^{-1}$ at 100 mA g $^{-1}$	97.4% after 2500 cycles at 1000 mA g ⁻¹	2
Mn ₃ O ₄	2 M ZnSO ₄	239.2 mAh g ⁻¹ at 100 mA g ⁻¹	72.2% after 300 cycles at 500 mA $g^{\rm -1}$	3
SSWM@ Mn₃O₄	2 M ZnSO ₄ + 0.1 M MnSO ₄	296 mAh g $^{-1}$ at 100 mA g $^{-1}$	60% after 500 cycles at 500 mA $\rm g^{-1}$	4
MgV ₂ O ₄	$2 \text{ M Zn}(\text{TFSI})_2$	272 mAh g $^{-1}$ at 200 mA g $^{-1}$	74% after 500 cycles at 4000 mA g ⁻¹	5
ZnV ₂ O ₄	2 M Zn(ClO ₄) ₂	312 mAh g ⁻¹ at 0.5 C	82% after 1000 cycles at 10C	6
rGO@HM- ZnMn₂O₄	1M ZnSO ₄ +0.05M MnSO ₄	146.9 mAh g ⁻¹ at 300 mA g ⁻¹	88% after 650 cycles at 1000 mA g ⁻¹	7
ZnNi _x Co _y Mn₂ _{-x-y} O₄@N- rGO	2M ZnSO ₄ + 0.2M MnSO ₄	200.5 mAh g ⁻¹ at 10 mA g ⁻¹	79% after 900 cycles at 1000 mA g ⁻¹	8
MgMn ₂ O ₄	$1M ZnSO_4 + 1M$ $MgSO_4 + 0.1 M$ $MnSO_4$	247 mAh g ⁻¹ at 50 mA g ⁻¹	80% after 500 cycles at 500 mA $\rm g^{-1}$	9
Mg2MnO4	2M ZnSO ₄ + 0.1M MnSO ₄	371.7 mAh g ⁻¹ at 150 mA g ⁻¹	85% after 2000 cycles at 3000 mA g ⁻¹ (compared to the discharge capacity after activation)	This work

Reference:

1. N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, *J. Am. Chem. Soc.*, 2016, **138**, 12894-12901.

- 2. L. Chen, Z. Yang, H. Qin, X. Zeng and J. Meng, J. Power Sources, 2019, 425, 162-169.
- 3. J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu and F. Kang, *Electrochim. Acta*, 2018, **259**, 170-178.
- 4. C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang and S. Liang, J. Mater. Chem. A, 2018, 6,

9677-9683.

- W. Tang, B. Lan, C. Tang, Q. An, L. Chen, W. Zhang, C. Zuo, S. Dong and P. Luo, ACS Sustainable Chem. Eng., 2020, 8, 3681-3688.
- Y. Liu, C. Li, J. Xu, M. Ou, C. Fang, S. Sun, Y. Qiu, J. Peng, G. Lu, Q. Li, J. Han and Y. Huang, *Nano Energy*, 2020, 67, 104211.
- 7. L. Chen, Z. Yang, H. Qin, X. Zeng, J. Meng and H. Chen, *Electrochim. Acta*, 2019, **317**, 155-163.
- 8. Y. Tao, Z. Li, L. Tang, X. Pu, T. Cao, D. Cheng, Q. Xu, H. Liu, Y. Wang and Y. Xia, *Electrochim. Acta*, 2020, **331**, 135296.
- 9. V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo, S. Kim, J. Lee, S. Islam, K. Kim, Y.-K. Sun and J. Kim, *ACS Energy Lett.*, 2018, **3**, 1998-2004.
- 10 Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, Y. Xia, Angew. Chem. Int. Ed., 2018, **57**, 11737-11741.
- W. Wang, V. S. Kale, Z. Cao, S. Kandambeth, W. Zhang, J. Ming, P. T. Parvatkar, E. Abou-Hamad, O. Shekhah, L. Cavallo, M. Eddaoudi, H. N. Alshareef, ACS Energy Lett. 2020, 5, 2256-2264.
- 12 Q. Wang, Y. Liu, P. Chen, J. Power Sources, 2020, **468**, 228401.
- 13 K. W. Nam, H. Kim, Y. Beldjoudi, T. W. Kwon, D. J. Kim, J. F. Stoddart, J. Am. Chem. Soc., 2020, **142**, 2541-2548.