## **Supporting Information**

## Direction-aware and Ultrafast Self-healing Dual Network Hydrogel for

## Flexible Electronic Skin Strain Sensor

Wenwu Peng,<sup>a</sup> Lu Han,<sup>a</sup> Hailong Huang,<sup>a</sup> Xiaoyang Xuan,<sup>b</sup> Guodong Pan,<sup>a</sup> Lijia Wan,<sup>a</sup> Ting Lu,<sup>a</sup> Min Xu,<sup>\*a</sup> and Likun Pan<sup>\*a</sup>

<sup>a</sup> Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

<sup>b</sup> Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, China.

\*Email: lkpan@phy.ecnu.edu.cn (Likun Pan); xumin@phy.ecnu.edu.cn (Min Xu)



Figure S1. SEM image of MXene.



**Figure S2.** XRD patterns of the PBP and PBPM-2 hydrogel (# represents several new peaks in the XRD pattern of PBPM-2 compared with PBP).

|                                                 |        | Element<br>CK<br>NK<br>OK<br>TiK | Weight %<br>54.99<br>12.49<br>25.01<br>0.40 | Atomic %<br>63:86<br>12:44<br>21:81<br>0.12 |   |  |
|-------------------------------------------------|--------|----------------------------------|---------------------------------------------|---------------------------------------------|---|--|
| 0                                               | 1<br>1 | 2                                | 3                                           | 4                                           | 5 |  |
| Figure S3. EDS spectrum of the PBPM-2 hydrogel. |        |                                  |                                             |                                             |   |  |



**Figure S4.** Stress-strain experiments to quantitatively analyze the impact of composition on the performance. (a) Tensile stress-strain curves of the hydrogels with different MXene contents. (b) Compressive stress-strain curves of the hydrogels with different MXene contents at 0-70% strain. Histograms of (c) tensile and (d) compressive elastic modulus of the hydrogels with different MXene contents.



**Figure S5.** Excellent mechanical properties of the PBPM-2 hydrogel: (a) original state of the PBPM-2 hydrogel; (b) flexural and (c) helical twisting state of the PBPM-2 hydrogel.



Figure S6. Conductivity variations for the hydrogels with different MXene contents.



**Figure S7.** Strain sensing performances of the hydrogels. (a) Real-time current response of the PBPM-2 hydrogel. Inset shows the response time. (b) Variations of relative resistance change ( $\Delta R/R_0$ ) of the hydrogels at 0-4000% strain. (c-e) Variations of gauge factor (GF) of the hydrogels at different strains of 0-20%, 20-400%, 200-4000%.



**Figure S8.** PBPM-2 hydrogel as flexible electronic skin finger sensor to detect different angles and directions.



**Figure S9.** Mechanical tensile and conductive properties of the PBPM-2 hydrogel recycled for different times. (a) Stress-strain curves and (b) conductivity change with different recycling times.

**Table S1.** Comparison of the self-healing efficiency, self-healing time and direction-aware

 ability between the PBPM-2 hydrogel and other hydrogels reported in the literatures.

| Hydrogel                                                                                        | Self-healing<br>efficiency* | Self-healing<br>Time | Direction-aware<br>ability | Reference |
|-------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----------------------------|-----------|
| MXene-hydrophobically<br>associated<br>polyacrylamide/poly(N-isopropyl<br>acrylamide)           | 59.5%                       | 72 h                 | No                         | 1         |
| Poly(1,4-cyclohexanedimethanol<br>succinate-co-citrate)                                         | 97.0%                       | 30 s                 | No                         | 2         |
| Polymer/microgel complex coacervate                                                             | 92.0%                       | 24 h                 | No                         | 3         |
| Clay/poly(2-(2-methoxyethoxy)<br>ethyl methacrylate-co-oligo<br>(ethylene glycol) methacrylate) | 84.8%                       | 12 h                 | No                         | 4         |
| Agarose/poly(vinyl alcohol)                                                                     | 90.0%                       | 10 s                 | No                         | 5         |
| Polyborosiloxane<br>/polydimethylsiloxane                                                       | 86%                         | 6 h                  | No                         | 6         |
| Dopamine-coated reduced-<br>graphene oxide/hydroxypropyl<br>guar gum                            | 90.5%                       | 2 h                  | No                         | 7         |
| Functionalized single-wall carbon<br>nanotube/polydopamine-polyvinyl<br>alcohol                 | 99.0%                       | 2 s                  | No                         | 8         |
| Poly((3-sulfopropyl methacrylate<br>potassium salt-r-methyl<br>methacrylate)                    | 98.3%                       | 3 h                  | No                         | 9         |
| Cellulose nanocrystals /cellulose<br>nanofiber-polypyrrole/polyvinyl<br>alcohol                 | 72.0-76.3%                  | 30 min               | No                         | 10        |
| Gelatin/polyacrylamide/acrylated<br>dopamine-Fe <sup>3+</sup>                                   | 90.0%                       | 24 h                 | No                         | 11        |
| Alginate-gelatin/polypyrrole                                                                    | 40.0%                       | 2 h                  | No                         | 12        |
| PBPM-2                                                                                          | 100%                        | 0.06 s               | Yes                        | this work |

Note:\* indicates the percentage of original tensile strength recovered.

**Table S2.** Components of the PBPM hydrogels.

| Hydrogel | PVA (g) | Bn (g) | PEI (g) | MXene (g) |
|----------|---------|--------|---------|-----------|
| PBP      | 0.6     | 0.09   | 0.6     | /         |
| PBPM-1   | 0.6     | 0.09   | 0.6     | 0.03      |
| PBPM-2   | 0.6     | 0.09   | 0.6     | 0.06      |
| PBPM-3   | 0.6     | 0.09   | 0.6     | 0.09      |
| PBPM-4   | 0.6     | 0.09   | 0.6     | 0.12      |

## References

- Y. Zhang, K. Chen, Y. Li, J. Lan, B. Yan, L. Y. Shi and R. Ran, ACS Appl. Mater. Interfaces, 2019, 11, 47350-47357.
- J. H. Yoon, S. M. Kim, Y. Eom, J. M. Koo, H. W. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H. J. Yoo, S. Y. Hwang, J. Park and B. G. Choi, *ACS Appl. Mater. Interfaces*, 2019, 11, 46165-46175.
- S. Wu, M. Zhu, D. Lu, A. H. Milani, Q. Lian, L. A. Fielding, B. R. Saunders, M. J. Derry, S. P. Armes, D. Adlam and J. A. Hoyland, *Chem. Sci.*, 2019, 10, 8832-8839.
- P. Wei, T. Chen, G. Chen, H. Liu, I. T. Mugaanire, K. Hou and M. F. Zhu, ACS Appl. Mater. Interfaces, 2019, 12, 3068-3079.
- M. S. Tsai, T. L. Shen, H. M. Wu, Y. M. Liao, Y. K. Liao, W. Y. Lee, H. C. Kuo, Y. C. Lai and Y. F. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 9755-9765.
- M. Tang, P. Zheng, K. Wang, Y. Qin, Y. Jiang, Y. Cheng, Z. Li and L. Wu, J. Mater. Chem. A, 2019, 7, 27278-27288.
- Z. Sun, L. Wang, X. Jiang, L. Bai, W. Wang, H. Chen, L. Yang, H. Yang and D. Wei, *Int. J. Biol. Macromol.*, 2019, 155, 1569-1577.
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu, Y. Wang, R. Shi and L. Zhang, *Adv. Funct. Mater.*, 2017, 27, 1703852-1703862.
- J. Lee, M. W. M. Tan, K. Parida, G. Thangavel, S. A. Park, T. Park and P. S. Lee, *Adv. Mater.*, 2019, 32, 1906679-1906688.
- L. Han, S. Cui, H. Y. Yu, M. Song, H. Zhang, N. Grishkewich, C. Huang, D. Kim and K. M. C. Tam, ACS Appl. Mater. Interfaces, 2019, 11, 44642-44651.
- 11. Z. Gao, Y. Li, X. Shang, W. Hu, G. Gao and L. Duan, Mater. Sci. Eng. C, 2020, 106, 110168-110168.
- 12. K. Ren, Y. Cheng, C. Huang, R. Chen, Z. Wang and J. Wei, J Mater. Chem. B, 2019, 7, 5704-5712.