Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Fabricating Nano-IrO₂@amorphous Ir-MOFs Composites for Efficient Overall Water Splitting: One-pot Solvothermal Approach

Lei Li^a, Guilin Li^a, Yaping Zhang^b, Wenjun Ouyang^a, Huiwen Zhang^c, Feifei Dong^a, Xuehui Gao^{c,*} and Zhan

Lin^{a,*}

^a Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. E-mail:

zhanlin@gdut.edu.cn.

^b State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

^c Department of Chemistry, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>gxh0357@zjnu.edu.cn</u>.

Figure S1. SEM (a) and TEM (b) images of IrO₂@Ir-MOF.

Figure S2. EDX of IrO₂@Ir-MOF.

Figure S3. PXRD spectra of IrO₂.

Figure S4. XPS spectra of IrO₂@Ir-MOF.

Figure S5. N₂ sorption isotherms of IrO₂@Ir-MOF at 77k.

Figure S6. The corresponding mesoporous size distribution (BJH method) of IrO₂@Ir-MOF.

Figure S7. FTIR spectra of IrO₂@Ir-MOF and H₂BDC.

Figure S8. TEM images of IrO₂@Ir-MOF soaked in 1 M KOH solution for 1 (a, b), 40 (c, d) and 120 (e, f) hours.

Figure S9. XRD patterns of as prepared IrO₂@Ir-MOF and soaked in 1 M KOH.

Figure S10. Raman spectra of as prepared IrO₂@Ir-MOF and soaked in 1 M KOH.

Figure S11. OER polarization curves.

Figures S12. Linear sweep voltammetry curves toward OER.

Catalyst	Overpotential (η_{10} ,mV)	
IrO ₂ @Ir-MOF-ppy	207	
IrO ₂ @Ir-MOF-1:2-ppy	244	
IrO ₂ @Ir-MOF	284	
IrO ₂ @Ir-MOF-1:2	289	
IrO ₂ -ppy	332	
IrO ₂	328	
рру		

Table S1. Comparison of the OER activity of Ir-based catalysts in 1 M KOH electrolytes.

Table S2. Summary of the recently reported OER electrocatalysts in 1 M KOH electrolytes.

Catalyst	η_{10} /mV	Catalyst Loading /mg cm ⁻²	Ref
IrO ₂ @Ir-MOF	207	$20.4 \ \mu g_{Ir} \ cm^{-2}$	This work
IrO ₂ /CC	209	$35.5 \ \mu g_{Ir} \ cm^{-2}$	<i>Adv. Energy Mater.</i> 2020 , 2001600
Ir NWs	224	None	<i>Adv. Funct. Mater.</i> 2018 , 28, 1803722
RuCu NSs/C-350 °C	234	None	Angew. Chem. Int. Ed. 2019, 58, 2-8
IrO ₂ (1:100)-450 °C	276	$0.379 \ \mu g_{IrO2} \ cm^{-2}$	Nanoscale, 2017, 9, 9291-9298

Table S3. The Ir loading of electrodes based on different catalysts calculated from ICP-OES.

Catalysts	Ir loading (ug cm ⁻²)
IrO ₂ @Ir-MOF-ppy	20.4
IrO ₂ @Ir-MOF	20.4
рру	None
IrO ₂	80

Figure S13. Mass activity of IrO₂@Ir-MOF-ppy, IrO₂@Ir-MOF and IrO₂ at 280, 300, 320, and 340 mV.

Figure S14. Cyclic voltammograms (CV) of IrO₂@Ir-MOF-ppy, IrO₂@Ir-MOF, ppy and IrO₂ in the window of 1.142~1.242 V *vs*. RHE at various scan rates (20, 30, 40, 50, 60 and 70 mV/s).

Figure S15. EIS spectra of ppy are recorded at 1.6 V vs. RHE with 5 mV amplitude in a frequency range from 10^5 to 1 Hz

Figure S16. EIS spectra of corresponding catalysts recorded at 1.6 V vs RHE with 5 mV amplitude in a frequency range from 10^5 to 1 Hz.

Sample	R_s/Ω	R_{ct}/Ω
IrO ₂ @Ir-MOF-ppy	5.553	22.09
IrO ₂ @Ir-MOF	4.955	230
IrO ₂	5.4	126
рру	4.999	6881

Table S4. EIS data of various electrodes.

Figure S17. HER polarization curves of $IrO_2@Ir-MOF-ppy$ (a) and $IrO_2@Ir-MOF-1:2-ppy$ (b) with 80% *i*R-compensation in 1 M KOH solution at a scan rate of 5 mV/s.

Figure S18. Tafel plots of different catalysts overpotential at different current densities of HER.

Figure S19. Cyclic voltammograms (CV) curves of IrO₂@Ir-MOF-ppy and 20% Pt/C in the window of -0.022~0.078 V *vs*. RHE at various scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mV/s).

Figure S20. (left) The difference (Δj) between capacitive currents as a function of scan rates to give the double-layer capacitance (C_{dl}) for IrO₂@Ir-MOF-ppy and 20% Pt/C. (right) EIS spectra of corresponding catalysts recorded at an overpotential of 150 mV with 5 mV amplitude in a frequency

range from 10^5 to 1 Hz.

Figure S21. The stability test of $IrO_2@Ir-MOF$ -ppy for HER at the current density around 10 mA/cm² in 1M KOH with 80% *i*R-compensation.

Anode	Cathode	Cell voltage /V	Ref
IrO ₂ @Ir-MOF	IrO ₂ @Ir-MOF	1.53	This work
RuO ₂	Pt/C	1.55	Angew. Chem. Int. Ed. 2017, 56, 573-577
Pt-CoS ₂	Pt-CoS ₂	1.55	Adv. Energy Mater. 2018, 8, 1800935
Ir/MoS ₂	Ir/MoS ₂	1.60	ACS Energy Lett. 2019, 4, 368-374
Pt-IrO ₂ /CC	IrO ₂ /CC	1.492	Adv. Energy Mater. 2020, 2001600
Ru NWs	Ir NWs	1.47	Adv. Funct. Mater. 2018, 28, 1803722
RuCu NSs/C-350 °C	RuCu NSs/C-250 °C	1.49	Angew. Chem. Int. Ed. 2019, 58, 2-8

Table S5. Summary of the recently reported water splitting electrocatalysts in 1 M KOH electrolytes.

Figure S22. XPS spectra of IrO₂@Ir-MOF after OER.

After OEI	ł	Before Ol	Before OER	
Ir ⁴⁺ 4f _{7/2}	61.6	$Ir^{4+} 4f_{7/2}$	61.5	
Ir ⁴⁺ 4f _{5/2}	64.5	$Ir^{4+} 4f_{5/2}$	64.5	
Ir ³⁺ 4f _{7/2}	62.7	$Ir^{3+} 4f_{7/2}$	62.6	
Ir ³⁺ 4f _{5/2}	65.7	${\rm Ir^{3+}} 4f_{5/2}$	65.9	
O-Ir	531	O-Ir	530.8	
О-С	532.3	О-С	532.0	
O=C	533.7	O=C	533.4	

Table S6. The XPS peak position of IrO₂@Ir-MOF before and after OER.

Figure S23. PXRD pattern of IrO₂@Ir-MOF-ppy after long-term water splitting experiment.

Figure S24. TEM images of IrO₂@Ir-MOF-ppy after long-term water splitting experiment.

Figure S25. RHE correction diagram of Ag/AgCl reference electrode used in the experiment in 1 M KOH system before and after long-term water splitting experiment.