Three-dimensional self-supported CuCo₂O₄ nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li-O₂ batteries

Kefan Song ^{a,b,c}, Wen Ai ^{a,b,c}, Yuan Zhang ^{a,b,c}, Yating Zeng ^{a,b,c}, Yawei Yu ^{a,b,c},

Handan Qiao ^{a,b,c}, Zeyu Liu ^{a,b,c}, Xiaodong Shen ^{a,b,c}, Xiaohui Hu ^{a,b,c}, Xiulan Hu ^{a,b,c,*}

^a College of Materials Science and Engineering, Nanjing Tech University, China

^b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China

^c The Synergetic Innovation Center for Advanced Materials, Nanjing, China

* Correspondence information: Xiulan Hu, College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, China, whoxiulan@163.com, +86 152 4022 7230 **DFT calculation models**: The present first principle density functional theory calculations are performed by Vienna Ab initio Simulation Package with the projector augmented wave method. The exchange-functional is operated by utilizing the generalized gradient approximation of Perdew-Burke-Ernzerhof functional. To optimize cell optimization and calculations of atoms, the cut-off energy of the plane-wave basis is recorded at 450 eV. The vacuum spacing in a direction perpendicular to the plane of the catalyst is at least 20 Å. The Brillouin zone integration is conducted to use $2x2 \times 1$ Monkhorst-Pack k-point sampling for a primitive cell. A convergence energy threshold of 10^{-5} eV is applied in the self-consistent calculations. The equilibrium lattice constants are optimized with maximum stress on each atom within 0.05 eV/Å.

Fig. S1 XRD patterns of the NiO/CC.

Fig. S2 FE-SEM images of the $CuCo_2O_4/CC$.

Fig. S3 FE-SEM images of the CuCo₂O₄@NiO/CC.

Fig. S4 FE-SEM images of the NiO/CC.

Fig. S5 The discharge and charge curves of LOBs with the NiO/CC under a limited

capacity of 500 mA h g⁻¹ at 0.2 mA cm⁻².

Fig. S6 The ex-situ XPS spectra of CuCo₂O₄@NiO/CC cathode after first overcharge (The charge specific capacity of 11721 mA h g⁻¹ exceeds the corresponding discharge specific capacity of 9335 mA h g⁻¹) in Li 1s regions at 0.2 mA cm⁻².

Fig. S7 FE-SEM images for NiO/CC electrode after the 1^{st} cycle discharge. (Under a limited capacity of 2000 mA h g⁻¹ at 0.2 mA cm⁻²)

Table S1 Comparison of electrochemical performances of LOBs with $CuCo_2O_4@NiO/CC$ and the other reports that use $CuCo_2O_4$ or NiO as the catalysts. (All specific capacities and current densities were calculated based on the total mass loading of catalysts in the electrodes.)

Cathode	Maximum discharge capacity/ current density (~mA h g ⁻¹ /~mA cm ⁻²)	Limited capacity / current density (~mA h g ⁻¹ /~mA cm ⁻²)	Cycle number	Ref
mesoporous CuCo ₂ O ₄	7456/0.11	500/0.11	28	S1
CuCo2O4 nanoparticles	5288/0.057 4687/0.114	500/0.114	85	S2
CuCo ₂ O ₄ nanowire/Ni foam	7466/0.5	500/0.1	146	S 3
CuCo ₂ O ₄ nanosheet/carbon textiles	9970/0.174 8840/0.235	500/0.118	65	S4
Mesoporous NiO	1260/0.059	500/0.059	35	S5
Pt/NiO	2329/0.1	800/0.1	47	S6
Co-Doped NiO/Ni foam	9754/0.168	500/0.168	165	S7
CuCo2O4@NiO/CC	10843/0.1 9335/0.2 7287/0.3 5179/0.5	500/0.2	181	This work

- S1. P. F. Li, W. Sun, Q. L. Yu, P. Yang, J. S. Qiao, Z. H. Wang, D. Rooney and K.
 N. Sun, *Solid State Ionics*, 2016, 289, 17-22.
- P. X. Wang, L. Shao, N. Q. Zhang and K. N. Sun, *Journal of Power Sources*, 2016, **325**, 506-512.
- S3. W. Sun, Y. Wang, H. T. Wu, Z. H. Wang, D. Rooney and K. N. Sun, *Chemical communications*, 2017, **53**, 8711-8714.
- S4. Y. Z. Huang, Y. X. Jiang, L. Zou, J. F. Cheng, B. Chi, J. Pu and J. Li, *Journal of the Electrochemical Society*, 2017, **164**, A3896-A3902.
- S5. S. F. Tong, M. B. Zheng, Y. Lu, Z. X. Lin, J. Li, X. P. Zhang, Y. Shi, P. He and H. S. Zhou, *Journal of Materials Chemistry A*, 2015, **3**, 16177-16182.
- S6. H. Y. Dong, P. P. Tang, X. R. Wang, K. Li, Y. W. Wang, D. Wang, H. Liu, S.
 T. Yang and C. Wu, ACS applied materials & interfaces, 2019, 11, 39789-39797.
- S7. H. Wang, H. J. Wang, J. S. Huang, X. L. Zhou, Q. X. Wu, Z. K. Luo and F. Wang, ACS applied materials & interfaces, 2019, 11, 44556-44565.