Supplmenetary Information

High-throughput investigation of the formation of double spinels

V. Kocevski, G. Pilania, and B. P. Uberuaga

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Table. S1. Total energy (E_{tot}), in eV/formula unit, of the experimentally (expr.) determined normal (left) and inverse (right) spinels, along with the energy of the compound in the other structural type.

	Expr. normal			nverse	
Composition	Normal E _{tot}	Inverse E _{tot}	Composition	Inverse E _{tot}	Normal E _{tot}
CdCr ₂ O ₄	-47.621	-45.616	Al_2CdO_4*	-44.367	-45.064
$CdFe_2O_4$	-41.137	-40.763	Al ₂ NiO ₄	-47.119	-46.815
$CdGa_2O_4$	-37.756	-37.230	Cd_2GeO_4	-35.049	-34.737
CdIn ₂ O ₄	-35.852	-35.283	Co ₂ CuO ₄ *	-39.609	-39.806
$CdMn_2O_4$	-45.414	-44.797	Co ₂ FeO ₄	-44.018	-43.680
$CdRh_2O_4$	-40.961	-38.949	Co ₂ MnO ₄	-46.024	-45.590
CdV_2O_4	-47.881	-46.934	Co ₂ NiO ₄	-39.444	-39.343
$CoAl_2O_4$	-49.884	-49.557	Fe ₂ CoO ₄	-45.677	-45.626
CoCo ₂ O ₄	-42.490	-42.121	Fe ₂ CuO ₄	-42.769	-42.704
$CoCr_2O_4$	-52.079	-50.466	Fe ₂ FeO ₄	-46.684	-46.684
CoMn ₂ O ₄	-49.665	-49.485	Fe_2MgO_4	-45.402	-45.324
$CoRh_2O_4$	-45.192	-43.796	Fe_2NiO_4	-43.056	-42.309
CoV_2O_4	-52.339	-51.646	Ga ₂ CoO ₄	-42.211	-42.137
CuAl ₂ O ₄	-46.898	-46.697	Ga_2CuO_4	-39.279	-39.222
CuCr ₂ O ₄	-49.198	-47.872	Ga_2MgO_4	-42.058	-41.979
CuMn ₂ O ₄	-47.207	-46.858	Ga ₂ NiO ₄	-39.659	-39.112
$CuRh_2O_4$	-42.866	-41.499	Ge ₂ FeO ₄ *	-46.060	-46.227
FeAl ₂ O ₄	-50.785	-50.557	In ₂ MgO ₄	-39.621	-39.535
FeCr ₂ O ₄	-53.051	-51.684	Mn_2FeO_4	-51.201	-50.986
FeV_2O_4	-53.230	-52.799	Mn ₂ NiO ₄	-47.012	-46.400
GeCo ₂ O ₄ *	-43.800	-43.942	Sn ₂ ZnO ₄	-37.959	-37.322
$GeFe_2O_4$	-46.227	-46.060	Zn ₂ GeO ₄	-37.336	-36.919
$GeMg_2O_4$	-43.653	-43.560			
GeNi ₂ O ₄	-38.774	-38.377			
$MgAl_2O_4$	-49.678	-49.487			
MgCo ₂ O ₄	-42.055	-41.548			
MgCr ₂ O ₄	-51.791	-50.315			
MgMn ₂ O ₄	-49.544	-49.403			
$MgRh_2O_4$	-44.759	-43.509			
MgTi ₂ O ₄	-56.702	-56.213			
MgV_2O_4	-51.986	-51.547			
$MnAl_2O_4$	-53.202	-52.737			
MnCr ₂ O ₄	-55.539	-53.928			
MnFe ₂ O ₄	-49.285	-49.048			

MnGa ₂ O ₄	-45.685	-45.440
$MnMn_2O_4$	-53.328	-53.327
$MnRh_2O_4$	-48.697	-47.297
MnTi ₂ O ₄	-60.468	-59.937
MnV_2O_4	-55.804	-55.128
$NiCr_2O_4$	-48.853	-47.903
$NiRh_2O_4$	-42.010	-41.123
$ZnAl_2O_4$	-46.786	-46.100
ZnCr ₂ O ₄	-48.889	-47.023
ZnFe ₂ O ₄	-42.421	-42.085
ZnGa ₂ O ₄	-39.092	-38.715
ZnIn ₂ O ₄	-36.579	-36.377
ZnMn ₂ O ₄	-46.619	-46.097
$ZnRh_2O_4$	-41.949	-40.208
ZnV_2O_4	-49.093	-48.224

*Single spinel where the calculations predict a different ground state structure than experimentally reported.

Table. S2. Mixing enthalpies (E_{mix}), in eV/formula unit, of the considered double spinels with three different types, in ascending order of the lowest E_{mix} . The single spinels that can form the double spinels, the composition of the lowest energy type and the type that they can form. In parenthesis is the cation in tetrahedral site.

Reference single spinels		Lowest energy			E _{mix}	E _{mix} (eV/ formula unit)			
Normal	Inverse	Composition	Туре	E _{mix}	DS-Inv ₁	DS-Norm	DS-Inv ₂		
MgTi ₂ O ₄	In₂MgO₄	(In)TiMgO₄	$DS-Inv_1$	-2.5479	-2.5479	0.3437	-2.0670		
MnTi ₂ O ₄	Co ₂ MnO ₄	(Mn)TiCoO₄	DS-Norm	-1.4981	-1.3626	-1.4981	-1.3724		
MgTi ₂ O ₄	Fe_2MgO_4	(Ti)FeMgO ₄	$DS-Inv_2$	-1.1102	-1.0422	-0.9445	-1.1102		
ZnMn ₂ O ₄	Sn ₂ ZnO ₄	(Zn)MnSnO₄	DS-Norm	-0.9257	-0.3312	-0.9257	-0.9213		
ZnFe ₂ O ₄	Sn ₂ ZnO ₄	(Zn)FeSnO ₄	DS-Norm	-0.7303	-0.0615	-0.7303	-0.4832		
ZnIn ₂ O ₄	Sn ₂ ZnO ₄	(In)SnZnO₄	$DS-Inv_2$	-0.4686	-0.2966	0.3402	-0.4686		
$NiRh_2O_4$	Co ₂ NiO ₄	(Co)RhNiO ₄	$DS-Inv_1$	-0.4384	-0.4384	0.0764	1.2278		
$FeAl_2O_4$	Co_2FeO_4	(Co)AlFeO ₄ *	$DS-Inv_1$	-0.3485	-0.3485	-0.1827	0.0496		
FeV_2O_4	Co_2FeO_4	(Co)VFeO ₄ *	$DS-Inv_1$	-0.3452	-0.3452	0.2075	-0.2071		
FeCr ₂ O ₄	Co_2FeO_4	(Co)CrFeO ₄ *	$DS-Inv_1$	-0.3371	-0.3371	-0.1539	1.2025		
FeV_2O_4	Mn_2FeO_4	(Mn)VFeO ₄	$DS-Inv_1$	-0.3238	-0.3238	-0.0903	0.3787		
$FeCr_2O_4$	Mn_2FeO_4	(Mn)CrFeO ₄	$DS-Inv_1$	-0.3186	-0.3186	0.0067	1.3370		
$NiCr_2O_4$	Ga_2NiO_4	(Ga)CrNiO ₄	$DS-Inv_1$	-0.2801	-0.2801	0.2507	1.2677		
FeAl ₂ O ₄	Mn_2FeO_4	(Mn)AlFeO ₄	$DS-Inv_1$	-0.2512	-0.2512	0.0402	0.3002		
GeNi ₂ O ₄	Zn_2GeO_4	(Zn)NiGeO ₄	$DS-Inv_1$	-0.2169	-0.2169	0.2199	0.6288		
$CdRh_2O_4$	AI_2CdO_4	(Cd)RhAlO ₄	DS-Norm	-0.1939	0.8844	-0.1939	1.4108		
MgV_2O_4	In_2MgO_4	(In)VMgO ₄	$DS-Inv_1$	-0.1877	-0.1877	0.1405	0.3357		
MnV_2O_4	Co_2MnO_4	(Mn)VCoO ₄	DS-Norm	-0.1862	-0.1630	-0.1862	0.2190		
$NiCr_2O_4$	Co_2NiO_4	(Co)CrNiO ₄	$DS-Inv_1$	-0.1847	-0.1847	0.0592	0.7692		
NiRh ₂ O ₄	Mn_2NiO_4	(Mn)RhNiO ₄	$DS-Inv_1$	-0.1819	-0.1819	0.1958	1.4819		
NiCr ₂ O ₄	Fe_2NiO_4	(Fe)CrNiO ₄	$DS-Inv_1$	-0.1759	-0.1759	0.2420	1.1736		
$CuRh_2O_4$	Ga_2CuO_4	(Cu)RhGaO₄	DS-Norm	-0.1653	0.4121	-0.1653	1.8689		
$NiRh_2O_4$	Ga_2NiO_4	(Ga)RhNiO₄	$DS-Inv_1$	-0.1604	-0.1604	0.1752	1.9498		

$CuRh_2O_4$	Fe ₂ CuO ₄	(Cu)RhFeO₄	DS-Norm	-0.1524	0.4419	-0.1524	1.6854
$MnRh_2O_4$	Co ₂ MnO ₄	(Co)RhMnO ₄	$DS-Inv_1$	-0.1471	-0.1471	0.0550	1.5548
GeMg ₂ O ₄	Zn₂GeO₄	(Zn)MgGeO₄	DS-Inv₁	-0.1384	-0.1384	0.1742	0.2133
CoRh ₂ O ₄	Fe ₂ CoO ₄	(Co)RhFeO₄	DS-Norm	-0.1340	0.2240	-0.1340	1.9256
GeCo ₂ O ₄	Zn ₂ GeO ₄	(Zn)CoGeO₄	DS-Inv₁	-0.1274	-0.1274	0.2810	0.1505
MgRh ₂ O ₄	Ga ₂ MgO ₄	(Ga)RhMgO₄	DS-Inv₁	-0.1220	-0.1220	-0.1077	2.0432
NiRh ₂ O ₄	Fe₂NiO₄	(Fe)RhNiO₄	DS-Inv₁	-0.1199	-0.1199	0.1495	1.7222
CoRh ₂ O ₄	Ga₂CoO₄	(Co)RhGaO₄	DS-Norm	-0.1160	0.2056	-0.1160	2.0488
MgV ₂ O ₄	Ga₂MgO₄	(Ga)VMgO₄	DS-Inv₁	-0.1003	-0.1003	0.0935	0.5836
MnAl ₂ O ₄	Co ₂ MnO ₄	(Co)AlMnO₄	DS-Inv₁	-0.0969	-0.0969	0.0888	0.2869
CuMn ₂ O ₄	Co ₂ CuO ₄	(Cu)MnCoO₄	DS-Norm	-0.0904	0.2101	-0.0904	0.3753
MgAl ₂ O ₄	Ga ₂ MgO ₄	(Ga)AlMgO ₄	$DS\operatorname{-Inv}_1$	-0.0861	-0.0861	0.0685	0.3148
CuAl ₂ O ₄	Ga ₂ CuO ₄	(Ga)AlCuO ₄	DS-Inv ₁	-0.0846	-0.0846	0.0631	0.3330
CuRh ₂ O ₄	Co_2CuO_4	(Cu)RhCoO₄	DS-Norm	-0.0843	0.0267	-0.0843	1.4552
MgRh ₂ O ₄	Fe ₂ MgO ₄	(Mg)RhFeO ₄	DS-Norm	-0.0784	-0.0063	-0.0784	1.9579
NiCr ₂ O ₄	Al ₂ NiO ₄	(AI)CrNiO ₄	$DS-Inv_1$	-0.0739	-0.0739	0.1201	1.1487
$CdCr_2O_4$	AI_2CdO_4	(Cd)CrAlO ₄	DS-Norm	-0.0674	0.7269	-0.0674	1.8579
$MgRh_2O_4$	In ₂ MgO ₄	(In)RhMgO₄	$DS-Inv_1$	-0.0660	-0.0660	1.4595	0.0197
MgMn ₂ O ₄	In ₂ MgO ₄	(In)MnMgO ₄	$DS-Inv_1$	-0.0627	-0.0627	0.2694	0.9532
MnCr ₂ O ₄	Co ₂ MnO ₄	(Co)CrMnO ₄	$DS-Inv_1$	-0.0619	-0.0619	0.1791	1.2718
CuMn ₂ O ₄	Fe ₂ CuO ₄	(Cu)MnFeO₄	DS-Norm	-0.0579	0.0841	-0.0579	0.1874
GeFe ₂ O ₄	Cd_2GeO_4	(Cd)FeGeO ₄	$DS\operatorname{-Inv}_1$	-0.0544	-0.0544	0.2014	0.4079
GeCo ₂ O ₄	Cd_2GeO_4	(Cd)CoGeO ₄	$DS\operatorname{-Inv}_1$	-0.0512	-0.0512	0.3805	0.4768
GeNi ₂ O ₄	Cd_2GeO_4	(Cd)NiGeO ₄	$DS\operatorname{-Inv}_1$	-0.0511	-0.0511	0.4049	0.9373
$CdFe_2O_4$	Al_2CdO_4	(Cd)FeAlO ₄	DS-Norm	-0.0475	0.6485	-0.0475	0.5725
$MgCr_2O_4$	Ga_2MgO_4	(Ga)CrMgO ₄	$DS-Inv_1$	-0.0407	-0.0407	0.0502	0.8797
$CuMn_2O_4$	Ga_2CuO_4	(Cu)MnGaO ₄	DS-Norm	-0.0343	0.0746	-0.0343	0.2159
$GeMg_2O_4$	Cd_2GeO_4	(Cd)MgGeO ₄	$DS\operatorname{-Inv}_1$	-0.0177	-0.0177	0.3267	0.4832
$MnGa_2O_4$	Co_2MnO_4	(Co)GaMnO ₄ *	$DS\operatorname{-Inv}_1$	-0.0145	-0.0145	0.1404	0.0252
CuAl ₂ O ₄	Co_2CuO_4	(Cu)AlCoO ₄	DS-Norm	-0.0140	0.0515	-0.0140	0.7146
MnFe ₂ O ₄	Co_2MnO_4	(Co)MnFeO ₄ *	$DS-Inv_1$	-0.0065	-0.0065	0.1932	0.1751
CdGa ₂ O ₄	AI_2CdO_4	(Cd)GaAlO ₄	DS-Norm	0.0042	0.7665	0.0042	0.4745
CoAl ₂ O ₄	Ga ₂ CoO ₄	(Ga)AlCoO ₄	$DS-Inv_1$	0.0045	0.0045	0.0301	0.4419
$GeFe_2O_4$	Zn_2GeO_4	(Zn)FeGeO ₄	$DS\operatorname{-Inv}_1$	0.0057	0.0057	0.2080	0.2218
$CoCr_2O_4$	Fe_2CoO_4	(Co)CrFeO ₄ *	DS-Norm	0.0064	0.1896	0.0064	1.5106
$CoMn_2O_4$	Fe ₂ CoO ₄	(Co)MnFeO ₄ *	DS-Norm	0.0100	0.1359	0.0100	0.2097
$CoCr_2O_4$	Ga ₂ CoO ₄	(Co)CrGaO ₄	DS-Norm	0.0138	0.1055	0.0138	1.6235
MgV_2O_4	Fe_2MgO_4	(Mg)VFeO ₄	DS-Norm	0.0146	0.0573	0.0146	0.4309
$NiRh_2O_4$	AI_2NiO_4	(Ni)RhAlO ₄	DS-Norm	0.0162	0.1416	0.0162	1.8848
$MgCr_2O_4$	Fe_2MgO_4	(Mg)CrFeO₄	DS-Norm	0.0194	0.1136	0.0194	1.4385
$CdMn_2O_4$	AI_2CdO_4	(Cd)MnAlO ₄	DS-Norm	0.0286	0.7582	0.0286	1.1452
CoAl ₂ O ₄	Fe ₂ CoO ₄	(Co)AlFeO ₄ *	DS-Norm	0.0305	0.1963	0.0305	0.4492
$CuCr_2O_4$	Fe ₂ CuO ₄	(Cu)CrFeO ₄	DS-Norm	0.0316	0.2038	0.0316	1.2665
CoMn ₂ O ₄	Ga ₂ CoO ₄	(Co)GaMnO ₄ *	DS-Norm	0.0329	0.1089	0.0329	0.2242
MgCo ₂ O ₄	Ga_2MgO_4	(Ga)CoMgO ₄	$DS\operatorname{-Inv}_1$	0.0356	0.0356	0.2475	0.5215
CoV_2O_4	Ga_2CoO_4	(Ga)VCoO ₄	$DS\operatorname{-Inv}_1$	0.0389	0.0389	0.0793	0.6971
CoV_2O_4	Fe_2CoO_4	(Co)VFeO ₄ *	DS-Norm	0.0397	0.1518	0.0397	0.5915
CuAl ₂ O ₄	Fe ₂ CuO ₄	(Cu)AlFeO ₄	DS-Norm	0.0417	0.0988	0.0417	0.3793

CuCr ₂ O ₄	Ga ₂ CuO ₄	(Cu)CrGaO ₄	DS-Norm	0.0439	0.1029	0.0439	1.3750
$MgCr_2O_4$	In ₂ MgO ₄	(In)CrMgO ₄	$DS-Inv_1$	0.0506	0.0506	0.1606	1.6992
CdIn ₂ O ₄	AI_2CdO_4	(Cd)InAlO ₄	DS-Norm	0.0559	0.7791	0.0559	0.5007
CuCr ₂ O ₄	Co ₂ CuO ₄	(Cu)CrCoO ₄	DS-Norm	0.0564	0.1173	0.0564	1.1591
$MgMn_2O_4$	Ga_2MgO_4	(Ga)MnMgO ₄	$DS-Inv_1$	0.0641	0.0641	0.1795	0.8513
$MgAl_2O_4$	Fe_2MgO_4	(Mg)AlFeO ₄	DS-Norm	0.0735	0.1791	0.0735	0.2850
$MgAl_2O_4$	In ₂ MgO ₄	(In)AlMgO ₄	$DS\operatorname{-Inv}_1$	0.0869	0.0869	0.2521	0.5007
MgTi ₂ O ₄	Ga_2MgO_4	(Ga)TiMgO ₄	$DS\operatorname{-Inv}_1$	0.0989	0.0989	0.2926	0.8843
$MgMn_2O_4$	Fe_2MgO_4	(Mg)MnFeO ₄	DS-Norm	0.1281	0.1335	0.1281	0.7210
ZnV_2O_4	Sn ₂ ZnO ₄	(Zn)VSnO ₄	DS-Norm	0.1285	0.6630	0.1285	1.1823
MgCo ₂ O ₄	Fe_2MgO_4	(Mg)CoFeO ₄	DS-Norm	0.1392	0.2615	0.1392	0.2850
$ZnRh_2O_4$	Sn ₂ ZnO ₄	(Zn)RhSnO ₄	DS-Norm	0.2668	0.3802	0.2668	1.2355
MgCo ₂ O ₄	In ₂ MgO ₄	(In)CoMgO ₄	$DS\operatorname{-Inv}_1$	0.2693	0.2693	0.3013	0.8027
NiCr ₂ O ₄	Mn_2NiO_4	(Ni)CrMnO ₄	DS-Norm	0.2766	0.3623	0.2766	1.0442
ZnCr ₂ O ₄	Sn ₂ ZnO ₄	(Zn)CrSnO ₄	DS-Norm	0.4610	0.6684	0.4610	0.9382
ZnGa ₂ O ₄	Sn ₂ ZnO ₄	(Sn)GaZnO ₄	$DS-Inv_1$	0.6737	0.6737	0.6985	0.9087
$ZnAl_2O_4$	Sn ₂ ZnO ₄	(Sn)AlZnO ₄	$DS\operatorname{-Inv}_1$	0.8791	0.8791	0.9545	1.5088
CdV_2O_4	AI_2CdO_4	(Cd)VAIO ₄	DS-Norm	0.9003	1.5339	0.9003	1.9242
FeV_2O_4	Ge_2FeO_4	(Ge)VFeO ₄	$DS-Inv_1$	0.9904	0.9904	1.1672	2.4722
FeCr ₂ O ₄	Ge_2FeO_4	(Ge)CrFeO ₄	$DS-Inv_1$	1.3604	1.3604	1.5721	1.7258
FeAl ₂ O ₄	Ge_2FeO_4	(Fe)AlGeO ₄	DS-Norm	1.7070	2.0412	1.7070	2.1582

*Double spinels with same composition, but can be made from different single spinels

Table. S3. List of single spinels for which other structure type (other phase) is reported to be more stable, with their space group, and total energy of the other phase and the spinel. The three last columns on the right show the reevaluated E_{mix} using the energy of the more stable other phase.

		E _{tot} (eV/formula unit)		Reevaluated E _{mix} (eV/formula uni		
Composition	Space group	Other phase	Spinel	 $DS-Inv_1$	DS-Norm	DS-Inv ₂
				 -0.0487	0.3597	0.2292
70 000	כם	-37.493	-37.336	0.0844	0.2867	0.3005
21120004	к-э			-0.0597	0.2529	0.2920
				-0.1382	0.2986	0.7075
Cd_2GeO_4	Pnma	-35.417	-35.049	0.1329	0.5646	0.6609
				0.1297	0.3854	0.5920
				0.1664	0.5108	0.6673
				0.1330	0.5890	1.1213
ZnIn ₂ O ₄	Pnma	-36.334	-36.579			
ZnIn ₂ O ₄	P21/c	-36.574	-36.579			
$GeMg_2O_4$	Pnma	-43.649	-43.653			
Cr_2FeO_4	Pnma	-52.510	-53.051			
Fe ₂ MgO ₄	Imma	-44.645	-45.402			

DS-Inv ₁					DS-Inv ₂				
Normal	<i>E</i> (eV)	Inverse	<i>E</i> (eV)	Normal	<i>E</i> (eV)	Inverse	<i>E</i> (eV)		
Al ₂ FeO ₄	0.137	Co ₂ FeO	0.037	Al ₂ CoO ₄	0	Fe ₂ CoO ₄	0		
V_2FeO_4	0.099	Co_2FeO_4	0.037	V_2CoO_4	0	Fe_2CoO_4	0		
Cr_2FeO_4	0.139	Co_2FeO_4	0.037	Cr_2CoO_4	0	Fe ₂ CoO ₄	0		
Ga ₂ MnO ₄	no data	Co ₂ MnO ₄	0.202	Mn ₂ CoO ₄	0.006	Ga_2CoO_4	0		
Fe_2MnO_4	0	Co_2MnO_4	0.202	Mn ₂ CoO ₄	0.006	Fe_2CoO_4	0		

Table. S4. Relative stability, i.e., distance from convex hull (*E* in eV) for the single spinels that form the same double spinel structure with different type, taken from Materials Project [1].

Fig. S1. Violin plots showing the distribution of the: a) Bader charge (Δq_{bader}), b) magnetic moment ($\Delta \mu$), and c) cation—oxygen distance ($\Delta d_{\text{M-O}}$) difference in the double spinel (DS) and the reference single spinels (SS) for all cations. The cation site, tetrahedral and octahedral is shown in blue and yellow, respectively. The distribution in all spinels and only in the stable spinels is shown in the left and right part of the violin plot, respectively. The box-plots for the total number and stable double spinels are shown in orange and purple, respectively.

Fig. S2. Histogram showing the total number (T) and number of stable spinels (S) of different spinel type for DS-Inv₁ and DS-Norm double spinels. Spinel DS-Norm-3 Normal, 2-3 Inverse, 4-2 Normal and 4-2 Inverse are shown in blue, red, yellow and green, respectively. Normal and inverse type are shown in lattice and striped pattern, respectively.

Fig. S3. Cation–oxygen distance difference ($\Delta d(M-O)$) between the double spinel and reference single spinels in: a) DS-Inv₁, and b) DS-Norm double spinel as a function of the E_{mix} . c) $\Delta d(M-O)$ between DS-Inv₁ and DS-Norm double spinel as a function of the difference in E_{mix} (ΔE_{mix}) between the two types. The $\Delta d(M-O)$ is calculated between the same cations in the three sites: tetrahedral (t), octahedral 1 (o₁) and 2 (o₂). The data from the 2-3 normal, 2-3 inverse and 4-2 inverse spinel is shown in blue, orange and red, respectively.

Fig. S4. Relation between tetrahedral–average octahedral site ionic radii and octahedral–octahedral ionic radii in: a) DS-Inv₁, and b) DS-Norm double spinels. Filled and open points show stable and unstable double spinels, respectively, respectively. The data from the 2-3 normal, 2-3 inverse and 4-2 inverse spinel is shown with square, circle and triangle points, respectively.

Fig. S5 Separating the double spinels based on: a) Sickafus et. al. [2], b) Yokoyama et. al. [3] and c) Stevanović et. al. [4] methods. A and B refers to the cations in a tetrahedral and octahedral site, respectively. Open and filled points show DS-Inv₁ and DS-Norm double spinel data, respectively. The data from the 2-3 normal, 2-3 inverse and 4-2 inverse spinel is shown with square, circle and triangle points, respectively. u_r and u are the anionic parameters, calculated using the equations:

 $u_r = \frac{r_A - \langle r_B \rangle}{(1 + \sqrt{3})a} + \frac{1.058}{1 + \sqrt{3}} \langle r_B \rangle \text{ is the average ionic radius on octahedral site; and} \qquad u = \frac{d(M_t - 0)}{a\sqrt{3}} + \frac{1}{8}, d(M_t - 0) \text{ is the average distance between oxygen and the cation in tetrahedral site.}$

References:

 [1] Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. Jain, Anubhav, et al. s.l. : AIP Publishing, 7 2013, APL Materials, Vol. 1, p. 011002.
[2] Structure of Spinel. Sickafus, Kurt E., Wills, John M. and Grimes, Norman W. s.l. : Wiley, 12 2004, Journal of the American Ceramic Society, Vol. 82, pp. 3279–3292.

[3] Relationship between Average Cation Radii and Oxygen Parameter for Various Oxides with Spinel-Type Structure. Yokoyama, Takashi and Meguro, Takeshi. s.l. : IOP Publishing, 8 2005, Japanese Journal of Applied Physics, Vol. 44, pp. 6201–6203.

[4] Simple Point-Ion Electrostatic Model Explains the Cation Distribution in Spinel Oxides. Stevanović, Vladan, d'Avezac, Mayeul and Zunger, Alex. s.l. : American Physical Society (APS), 8 2010, Physical Review Letters, Vol. 105.