Supplementary Information

Compositional Optimization of 2D-3D Heterojunction Interface for

22.6% Efficient and Stable Planar Perovskite Solar Cells

Maosheng He^a, Jianghu Liang^a, Zhanfei Zhang^a, Yuankun Qiu^a, Zihao Deng^a, Heng Xu^a, Jianli Wang^a, Yajuan Yang^a, Zhenhua Chen^b, and Chun-Chao Chen^{a*}

^aSchool of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
^bShanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China

Figure S1 False colored cross-sectional SEM image of PNAI-90 treated perovskite device.

Figure S2 3D CLSM image of PNAI-90 treated perovskite film

Figure S3 J-V curves of PSCs under different interfacial treatments by BAI (a) and PEAI (b).

Table S1 Photovoltaic characteristics of the best devices under different interfacial treatments

Devices	PCE(%)	$V_{oc}(V)$	J _{sc} (mA cm ⁻²)	FF
Control	20.26	1.08	23.74	78.99
BAI-20	21.17	1.10	23.82	80.80
BAI-90	21.69	1.14	23.89	79.63
BAI-120	20.87	1.12	23.80	78.30
PEAI-20	20.77	1.10	23.88	79.06
PEAI-90	21.30	1.12	23.78	79.97
PEAI-120	20.65	1.10	23.74	79.09

Figure S4 J–V curves of PSCs treated by PNAI-90 at different concentrations.

	Devices	PCE(%)	V _{oc} (V)	J _{sc} (mA/cm²)	FF
	Control	20.26	1.08	23.74	78.99
	10 mM	21.81	1.12	24.09	80.83
	20 mM	22.62	1.16	23.82	81.87
	30 mM	21.88	1.14	23.79	80.66
	50 mM	20.78	1.12	23.64	78.48
_	80 mM	17.69	1.10	21.85	73.57

Table S2 Photovoltaic characteristics of PSCs treated by PNAI-90 at different concentrations.

Table S3 Photovoltaic characteristics of the devices under different scan directions

Devices	PCE (%)	$V_{oc}(V)$	J _{sc} (mA cm ⁻²)	FF (%)	Hysteresis index	
Control	20.26	1.08	23.74	78.99	6.3%	
	18.98	1.06	23.68	75.63	0.570	
PNAI-90	22.62	1.16	23.82	81.87	0.40/	
	22.07	1.16	23.75	80.10	۷.4%	

Table S4 Fitting parameters for the time resolved PL curves of perovskite films.

Samples	т _{avg} (ns)	т ₁ (ns)	т ₂ (ns)	т ₃ (ns)	A1 (%)	A2 (%)	A3 (%)
Control	509.64	7.23	78.37	553.23	34.24	25.24	40.52
PNAI-20	634.42	15.72	87.27	1022.8 0	67.24	27.77	4.98
PNAI-90	1008.3 9	7.04	59.29	1209.5 6	69.47	23.16	7.37
PNAI-120	402.99	16.28	87.47	738.24	62.99	31.86	5.15

 $F(t) = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2) + A_3 exp(-t/\tau_3) + \gamma_0$

where $\tau 1$, $\tau 2$, and $\tau 3$ are fast decay time, intermediate decay time, and slow decay time, A1, A2, and A3 are the coefficient, respectively.

Figure S5 Nyquist plots of control and PNAI-90 treated perovskite solar cells measured in the dark.

Figure S6 (a) survey scan of XPS spectra of Control and PNAI-90 treated perovskite films. (b) the core level of Pb $4f_{7/2}$ obtained from the narrow scan.

Figure S7 Space charge-limited current (SCLC) of electron-only devices with structure of FTO/SnO₂/Perovskite/with or without interfacial layers/PCBM/Ag under dark conditions.

The architectures of electron-only devices are $FTO/SnO_2/perovskite/with$ or without interfacial layer/PCBM/Ag, and their dark trap-filled limit voltage (V_{TFL}) values from the I-V curves are 0.23 eV, 0.17 eV, 0.14 eV, 0.20 eV, respectively. The trap density (n_{trap}) can be calculated according to the following formula¹:

$$n_{\text{trap}} = \frac{2\varepsilon_0 \varepsilon_r V_{TFL}}{eL^2}$$

Where $\varepsilon_0 = 8.85 \times 10^{-12}$ F m⁻¹ and $\varepsilon_r = 46.9$ are the vacuum permittivity and the relative dielectric constants of FAPbI₃, respectively²; e is the elementary charge of the electron; L ~ 605 nm is the thickness of the perovskite film measured by the cross-section SEM image.

Furthermore, the electron mobility (μ) was derived using the Mott–Gurney law:

$$\frac{8J_DL^3}{9\varepsilon_0\varepsilon_rV^2}$$

where J_D is the current density and V is the applied voltage.

Samples	т _{avg} (ns)	т ₁ (ns)	т ₂ (ns)	A1 (%)	A2 (%)
Control	9.29	1.29	10.70	59.42	40.58
PNAI-20	8.91	1.04	10.32	64.03	35.97
PNAI-90	6.24	1.18	8.11	71.84	28.16
PNAI-120	7.30	1.41	10.12	77.42	22.58

Figure S8 UPS analysis results for work function and valence band of Control, PNAI-90 treated and PNAI-120 treated perovskite film.

Figure S9 The surface potential distribution charts of (a) control perovskite and (b) PNAI-90 treated perovskite film.

Figure S10 Absorption spectra of the perovskite film under different interfacial treatments before (a) and after (b) stored in high humidity ($70\pm10\%$ RH) for 150 days.

- T. Niu, J. Lu, M.-C. Tang, D. Barrit, D.-M. Smilgies, Z. Yang, J. Li, Y. Fan, T. Luo and I. McCulloch, *Energy & Environmental Science*, 2018, 11, 3358-3366.
- 2. W. Luo, C. Wu, D. Wang, Y. Zhang, Z. Zhang, X. Qi, N. Zhu, X. Guo, B. Qu and L. Xiao, *ACS applied materials & interfaces*, 2019, **11**, 9149-9155.