Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Highly selective photocatalytic conversion of methane to liquid oxygenates over silicomolybdic-acid/TiO₂ in mild condition

Zongwei Sun^a, Chunling Wang^{a*}, Yun Hang Hu^{a,b*}

a. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

b. Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA

*Corresponding author. Email: yunhangh@mtu.edu

Fig. S1. Schematic diagram of reactor system.

Fig. S2. Oxidation of CH₄ over different photocatalysts. Reaction conditions: 20 mg catalyst, 2
MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time, and 150 °C reaction temperature.

Fig. S3. The photocatalytic performances of 2.5% HSiMo/SiO₂ catalyst and 2.5% HSiMo/TiO₂ under light illumination. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time, and 150 °C reaction temperature.

Fig.S4. Photo product yield vs. temperature over 2.5% HSiMo/TiO₂ catalyst under light irradiation. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time.

Fig. S5. Photo product HCOOH yield vs. reaction time over 2.5% HSiMo/TiO₂ under light irradiation. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, and 150 °C reaction temperature.

Fig. S6. Cycles of photocatalytic methane oxidation over 2.5% HSiMo/TiO₂ under light irradiation. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time, and 150 °C reaction temperature.

Fig. S7. (a) UV spectra of HSiMo with selected concentrations and (b) The standard line of HSiMo concentration vs. UV intensity at wavelength of 207.6nm, revealing the concentration of HSiMo dissolved in the reaction solution with HSiMo/TiO₂ catalyst.

Fig. S8. (a) The IR spectra and (b) XRD pattern of HSiMo/TiO₂ catalyst before and after photo reaction. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time, and 150 °C reaction temperature.

Fig. S9. The IR spectrum of $HSiMo/TiO_2$ at the temperature of 100°C, 150°C and 200°C

Fig. S10. N₂-sorption isotherms and corresponding pore-size distribution and total pore volume curves (inset) of (a) TiO₂ and (b) 2.5%HSiMo/TiO₂ composites.

Fig. S11. HRTEM image of (a) TiO₂ and (b) HSiMo

Fig. S12. Band structure of 2.5wt% HSiMo/TiO₂. Note: The band gap (BG) of 2.69 eV was obtained from UV-visible spectrum (Fig. 5b). The potential of the conduction band (CB) is -0.26 eV (vs. Ag/AgCl) from the Mott-Schottky plot (Fig. 5d). The CB vs. RHE is 0.35 eV, which was calculated using E(RHE) = E(VAg/AgCl) + 0.059 pH + 0.197. The potential of the valence band (VB) vs. RHE is equal to BG+CB=2.69eV+0.35eV=3.4eV.

Fig. S13. Photo product yield over 2.5% HSiMo/TiO₂ catalyst under irradiation of 1.5G light and visible light and without light irradiation. Reaction conditions: 20 mg catalyst, 2 MPa O₂, 3 MPa CH₄, 20 ml water, 2 h reaction time, and 150 °C reaction temperature.

Fig. S14. GC-mass spectra of CH₃CH₂COOH generated from photocatalytic CH₄ oxidation with O_2 in D_2O or $H_2^{18}O$ over 2.5% HSiMo/TiO₂.

Table S1. Physicochemical	properties of TiO ₂ and	I HSiMo/TiO ₂ catalysts	S.
---------------------------	------------------------------------	------------------------------------	----

Sample	HSiMo loading (wt%)
2.5% HSiMo/TiO ₂	2.67
5% HSiMo/TiO ₂	4.95
10% HSiMo/TiO ₂	8.15

Table S2 Photocatalytic conversion of methane into oxygenates between this studies catalysts and other representative catalysts.

Catalyst	Oxidant	Photoproduct (umol/g _{cat})				- Dof		
Catalyst		CH ₃ OH	CH ₃ OOH	НСНО	НСООН	CH ₃ CHO	CO_2	NC1
0.33 wt.% FeO_x/TiO_2	H_2O_2	900	-	-	-	-	-	[1]
0.1 wt % Au/ZnO	O ₂	41.2	123.4	86.3	-	-	11.6	[0]
0.1 wt.% Ag/ZnO		7.3	19.3	112.1	-	-	7.1	[2]
Au _{0.75} /ZnO	O_2	1082	951	-	-	-	-	[3]
HSiMo/TiO ₂	O ₂	183.2	-	1344.6	1359.8	53.7	300.9	This work

Table S3. Textural properties of TiO₂ and HSiMo/TiO₂ catalysts.

Sample	$S_{BET}(m^2/g)$	Average pero diameter (nm)	Pore volume
		Average pore diameter (IIII)	(cm^{3}/g)
TiO ₂	55.7647	18.1165	0.2349
2.5%HSiMo/TiO ₂	55.8930	25.6163	0.3532
5%HSiMo/TiO ₂	53.3726	27.2799	0.3603
10%HSiMo/TiO ₂	37.0964	20.6932	0.2144

References:

[1] J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, *Nat. Catal.*, 2018, 1, 889–896.

[2] H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc., 2019, 141, 20507-20515.

[3] W. Zhou, X. Qiu, Y. Jiang, Y. Fan, S. Wei, D. Han, L. Niu, Z. Tang, *J. Mater. Chem. A*, 2020, **8**, 13277-13284.