Supporting Information for

Gel-limiting strategy for large-scale fabricating Fe-N-C single-atom ORR catalysts

Youpeng Wang, Qiulin Li, Long-Cheng Zhang, Yuanke Wu, Hao Chen, Tianhao Li, Maowen Xu* and Shu-Juan Bao*

Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China

*Corresponding authors.

E-mail addresses: xumaowen@swu.edu.cn (M. W. Xu), baoshj@swu.edu.cn (S. J. B).

Experimental Procedures

Materials. Agarose, soluble starch, dextran, and ferric trichloride hexahydrate (FeCl₃·6H₂O) were purchased prom Aladdin Co. Ltd, China. Pt/C (20-wt% on Vulcan XC-72R) was purchased from Hesen Co. Ltd, Shanghai, China. Nafion® solution (5 wt %) was purchased from Alfa Aesar Co. Ltd. Deionized water (DI) with a specific resistance of 18.25 M Ω cm⁻¹ was prepared in a purification instrument (Millipore Elix® Advantage 10, MERCK MILLIPORE). All chemicals were of analytical grade and used as-received without any further purification.

Preparation of Fe-AC. For the synthesis of Fe-AC, FeCl₃·6H₂O (200 mg) and agarose (600 mg) were dissolved in 30 mL deionized water under oil-bathing at 70 °C and continuous magnetic stirring. Then, 600 mg AC was added into the above solution, which was stirred continuously at 70 °C for 2 h, and cooled to room temperature (25 °C) to form a gel. The product was centrifuged at 9000 r/min to separate the supernatant. The obtained AC-gel mixture was freeze-dried and then transferred into a ceramic crucible and placed in a tube furnace. The as-prepared precursor was heated to 500 °C at 5 °C min⁻¹ in ammonia atmosphere and held for 1 h, followed by continued heated to 800 °C at 2 °C min⁻¹ and kept for 2 h. After cooling to room temperature, the samples were collected and marked as Fe-AC. The samples with different Fe contents were prepared under the same conditions, except the Fe-feeding was varied. According to the input amount of Fe, the samples containing theoretical contents of Fe in Fe-AC is 1% 3.2%, 14.7%, 34.1%, and 46.3% were respectively marked as Fe-AC-1, Fe-AC-2, Fe-AC-3, Fe-AC-4, and Fe-AC-5.

Preparation Fe-AC-ST and Fe-AC-DE. Following same procedure as described above Fe-AC and re placing agarose with soluble starch or dextran, additional samples were prepared and marked as Fe-AC-ST and Fe-AC-DE, for better comparison, here remark Fe-AC-2 as Fe-AC-AG.

Electrochemical measurements. The electron-transfer number (n) was calculated from the Koutecky-Levich equation, which is expressed as follows:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
(2)

Here, J is the measured current density, J_K and J_L are the kinetic- limiting and diffusionlimiting current densities, respectively, ω is the electrode rotating speed in rad s⁻¹, the K-L plots ($\omega^{-1/2}$ vs J^{-1}) in O₂-saturated 0.1 M KOH can be come from LSV curves at various rotation speeds. B can be determined from the slope of Koutecky-Levich plots as given by

$$B = 0.2nFC_0(D_0)^{2/3}v^{-1/6}$$
(3)

where F is the Faraday constant ($F = 96485 \text{ C mol}^{-1}$), C_{θ} is the bulk concentration of O₂ in 0.1 M KOH ($1.2 \times 10^{-6} \text{ mol cm}^{-3}$), D_{θ} is the diffusion coefficient of O₂ in 0.1 M KOH ($1.9 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$), and v is the kinetic viscosity of 0.1 M KOH ($0.01 \text{ cm}^2 \text{ s}^{-1}$).

The H_2O_2 yield (% H_2O_2) and the number of electron transfer (*n*) were calculated by the following equations:

$$\%(H_2O_2) = \frac{200 \times I_R/N}{I_D + I_R/N}$$
(3)

$$n = \frac{4 \times I_D}{I_D + I_D/N} \tag{4}$$

where I_D is the disk current, I_R is the ring current, and N (= 0.27) is the collection efficiency of RRDE.

Zn-Air Batteries testing

For Zn-air battery, an air cathode was prepared by mixing Fe-AC-1 or 20% Pt/C mixed with 5 wt% Nafion solution and loading on carbon fiber paper ($\Phi = 2.4$ cm). The catalyst mass loading was 1 mg cm⁻² and then dried at 60 °C for 4 h in an oven. The air cathode paired with a polished zinc plate ($\Phi = 2.4$ cm) and assembled in a home-made electrochemical cell shown in Figure 6a, 6 M KOH and 0.2 M ZnCl₂ were used for electrolyte. Before testing, the electrolyte was bubbled with oxygen for 30 min. The electrochemical measurements were carried out using an electrochemical workstation.

Materials Characterization. The surface morphologies of catalysts were characterized by using field-emission scanning electron microscopy (FE-SEM, JSM-7800F, Japan), transmission electron microscopy (TEM, Jeol-2100, Japan) and F30 S-TWIN electron microscope (TecnaiG2, FEI Company). The N₂ adsorption-desorption isotherms and corresponding pore size distribution were measured using automatic specific surface area and pore analyzer (Quadrasorb evo 2QDS-MP-30, Quantachrome Instruments, USA). The crystalline structure of the catalyst was recorded by XRD-7000 (XRD, Shimadzu XRD-7000). The Raman spectroscopy reflected the disorder and defect of catalyst was performed on Raman Spectrometer (LabRAM HR, JYEvolution, 532 nm). X-ray photoelectron spectroscopy (XPS, Escalab 250xi, USA) was used to analyze the surface compositions and element chemical state of various catalysts. The thermal properties of the samples were studied by a Thermo Gravimetric Analyzer (TGA, Q50, USA).

Results and Discussion

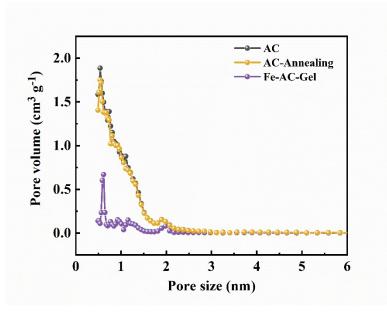


Figure S1. Pore size distribution of initial activated carbon, high temperature calcined activated carbon and gel-fulled activated carbon.

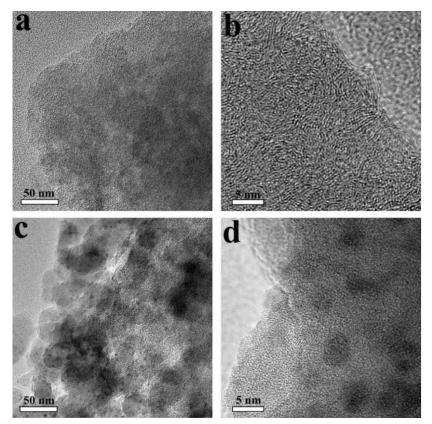


Figure S2. (a) and (b) TEM of Fe-AC-1, (c) and (d) TEM of Fe-AC-5.

Figure S3. Picture of sample weighing of that calcined in the same batch.

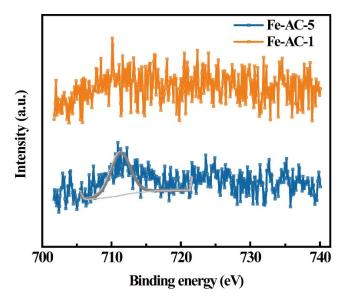


Figure S4. (a) Deconvoluted Fe 2p XPS spectra of Fe-AC-1 and Fe-AC-5.

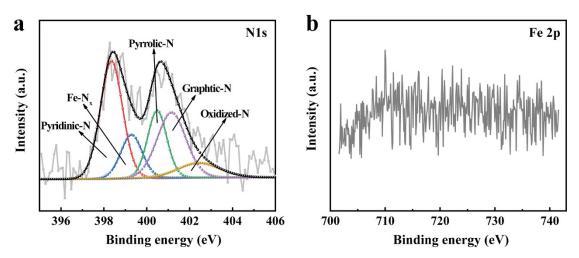
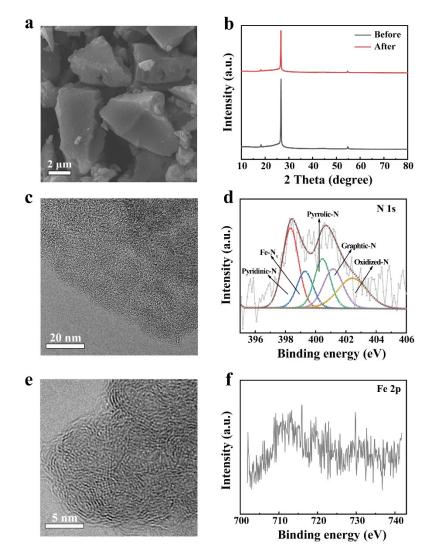



Figure S5. Deconvoluted N1s and Fe 2p XPS spectra of Fe-AC-2.

Figure S6. The FESEM (a), XRD (b), TEM (c, e) and deconvoluted XPS spectra (e, f) of the sample after 12 h of electrocatalysis.

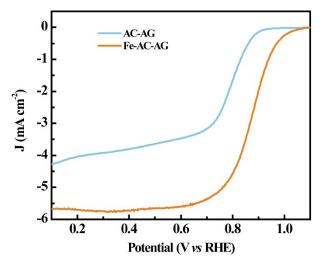


Figure S7. LSV curves (1600 rpm, 5 mV s⁻¹) of Fe-AC-AG and AC-AG in 0.1 M KOH.

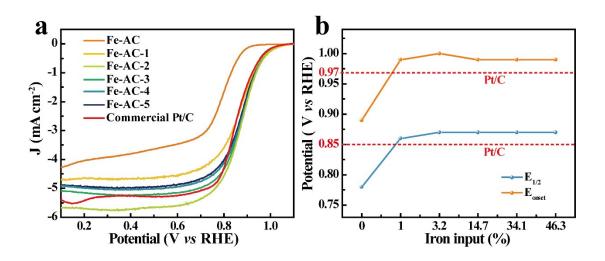
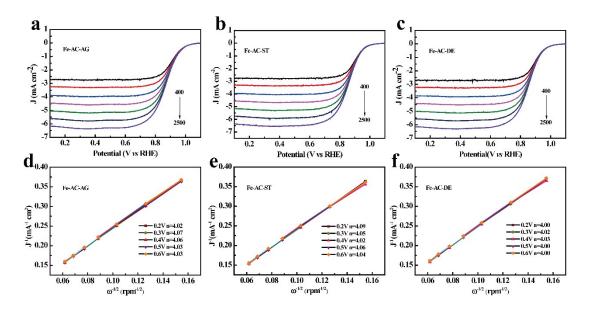



Figure S8. (a) LSV curves(a) and E_{onset} and $E_{1/2}$ (b) of Fe-AC with different sample and commercial Pt/C ORR in O₂-saturated electrolyte.

Figure S9. LSV curves with different sweep rates: (a) Fe-AC-AG, (b) Fe-AC-ST, (c) Fe-AC-DE; K-L curves: (d) Fe-AC-AG, (e) Fe-AC-ST, (f) Fe-AC-DE.