Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material

Role of high calcium ions in extending the properties of alginate dual-crosslinked hydrogels

Xiaojin Zhang, Kang Wang, Jiayuan Hu, Yuchen Zhang, Yu Dai and Fan Xia*

Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China E-mail: xiafan@cug.edu.cn

Fig. S1 Mixture of alginate, borax, gelatin, and $CaCl_2$. Scale bar: 1 cm.

Fig. S2 Mixture of ald-alginate, borax, gelatin, and CaCl₂. Scale bar: 1 cm.

Section 2: the swelling and degradation of AG hydrogel

Fig. S3 Swelling rate of AG hydrogel immersed in water or CaCl₂ solution for different times.

Fig. S4 Degradation rate of AG hydrogel immersed in water or CaCl₂ solution for different times.

Section 3: the tensile test of hydrogels

Fig. S5 Images of hydrogels immersed in $CaCl_2$ solution for different times and their tensile test.

Fig. S6 Images of hydrogels with different compositions immersed in CaCl₂ solution for 3 h and their tensile test.

Section 4: self-healing test of hydrogels

Fig. S7 Self-healing of CaAG hydrogel. Scale bar: 1 cm.

Fig. S8 Self-healing of CaAG hydrogel pieces. Scale bar: 1 cm.

Section 5: the adhesion test of hydrogels

Fig. S9 Hydrogel adhesion onto different substrates.

Fig. S10 Peeling process of AG hydrogel onto various substrates (glass, steel, and skin).

NaAG_{2/6}

Fig. S11 Peeling process of NaAG hydrogel onto various substrates (glass, steel, and skin).

Section 6: the cytotoxicity assay of hydrogels

Fig. S12 Relative cell viability of MCF-7 cultured with ald-alginate for 24 h as demonstrated by MTT assay (average of four measurements).

Fig. S13 Relative cell viability of MCF-7 cultured with gelatin for 24 h as demonstrated by MTT assay (average of four measurements).

Fig. S14 Relative cell viability of MCF-7 cultured with CaAG hydrogel extract for 24 h as demonstrated by MTT assay (average of four measurements).

Fig. S15 Gauge factor of CaAG hydrogel as a strain sensor.

Fig. S16 Self-healing and conductivity of CaAG hydrogels at -20 °C. (a) LED light switching device at -20 °C. LED lights up when CaAG hydrogel is connected. LED goes out when CaAG hydrogel is cut off. LED lights up again when CaAG hydrogel self-heals. (b) Relative resistance of CaAG hydrogel under different tensile conditions at -20 °C.

Section 9: the composition of hydrogels

Samples	Ald-alginate (wt/vol)	Gelatin (wt/vol)	Immersion time (37°C)
AG	2%	6%	0 min
CaAG-5m	2%	6%	5 min
CaAG-10m	2%	6%	10 min
CaAG-30m	2%	6%	30 min
CaAG-1h	2%	6%	1 h
CaAG-3h	2%	6%	3 h
CaAG-5h	2%	6%	5 h
CaAG-8h	2%	6%	8 h
CaAG-12h	2%	6%	12 h

 Table S1. Hydrogels with different immersion times.

 Table S2. Hydrogels with different ratios of ald-alginate and gelatin.

Samples	Ald-alginate (wt/vol)	Gelatin (wt/vol)	Immersion time (37°C)
NaAG _{2/6}	2%	6%	3 h
CaAG _{2/4}	2%	4%	3 h
CaAG _{2/6}	2%	6%	3 h
CaAG _{2/8}	2%	8%	3 h
CaAG _{4/6}	4%	6%	3 h
CaAG _{6/6}	6%	6%	3 h