Supporting Information

In-situ formed VOOH nanosheet arrays anchored on $Ti_3C_2T_x$ MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction

Liang Yan, *a,b Xuanwei Chen, a Xiaojun Liu, a Liping Chen a and Bing Zhang c

^a School of Chemistry and Materials Engineering, Huizhou University, No. 46 Yanda Road, Huizhou, 516007, China.

^b Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, No. 46 Yada Road, Huizhou, 516007, China.

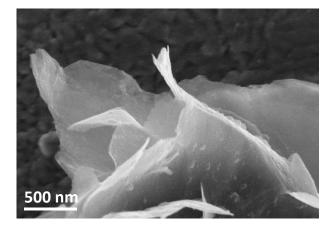
^c School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher EducationMega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China.

* Corresponding author.

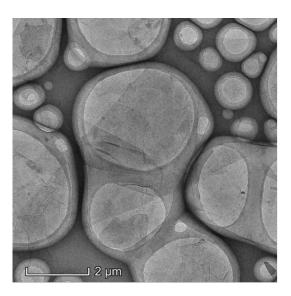
E-mail address: yanliang@hzu.edu.cn

Experimental Section

Chemicals and Materials: Ammonium vanadate (NH₄VO₃), hydrazine hydrate (N₂H₄·H₂O), hydrochloric acid (HCl), lithium fluoride (LiF, 99%), and anhydrous ethanol (C₂H₅OH, >99.5%) were obtained from Aladdin Reagents Ltd. The commercial Pt/C (20 wt% Pt on Vulcan XC-72R) was purchased from Johnson Mattey, while commercial IrO₂ was purchased from Alfa Aesar. Nafion (5 wt%) was purchased from Sigma-Aldrich. Carbon paper (CP, #60, 0.19 mm in thickness) was bought from Toray Industries, Inc. and washed sequentially with acetone, ethanol and deionized (DI) water before use. All the chemicals were used as received without further purification.


Preparation of $Ti_3C_2T_x$ *MXene nanosheets:* Ti₃AlC₂ powders (> 99.5 wt % purity) were bought from 11 Technology Co., Ltd. Ti₃C₂T_x MXene nanosheets were synthesized via etching the Ti₃AlC₂ powder with HF. Typically, 1.0 g of LiF was dissolved in 20.0 mL of 9.0 M HCl solution and stirred for 30 min, then 1.0 g of Ti₃AlC₂ powder was slowly added into the aforementioned solution and the mixed solution was kept stirring at 35 °C for 24 h. Afterward, the resulting suspension washed with DI water for several times until the neutral pH (\geq 6) was obtained. The collected powder was ultrasonicated in 200 mL of DI water for 1 h under continuous Ar purging. The obtained aqueous solution containing monolayer or few-layer Ti₃C₂T_x MXene nanosheets was centrifuged at 3500 rpm for 1 h and the supernatant was freeze-dried to obtain Ti₃C₂T_x MXene powder.

Synthesis of VOOH nanosheet arrays on $Ti_3C_2T_x$ MXene nanosheets: In a typical synthesis, 30 mg of $Ti_3C_2T_x$ MXene powder was first dispersed in 15 mL of deoxygenated DI water by ultrasonic treatment 1 h under the protection of Ar. Meantime, 2 mM of NH₄VO₃ was dissolved in 20 mL of DI water to obtain a homogeneous solution. Then, the obtained $Ti_3C_2T_x$ MXene suspension was added into the NH₄VO₃ solution under stirring, and the mixed solution was keeping stirred at room temperature for 1 h under the protection of Ar. HCl (1 mL 1 M) and N₂H₄·H₂O (1 mL) were then dropwise added in turn to the above mixture solution and continuous magnetic stirring for 30 min under the protection of Ar. Afterwards, the obtained solution was poured into a 50 mL Teflon-lined stainless-steel autoclave and reacted at 160 °C for 8 h. After cooling down to room temperature, the resulting products were thoroughly washed with deoxygenated DI water and ethanol several times and then freeze-dried overnight. Finally, the obtained VOOH/Ti₃C₂T_x MXene (164.4 mg) was collected and then stored at 0 °C in Ar-filled bottles before use. For comparison, bare VOOH was synthesized using a similar procedure to that of VOOH/Ti₃C₂T_x MXene except that no Ti₃C₂T_x MXene was added.


Material characterizations: The XRD patterns were recorded on a D8 Advance X-ray powder diffractometer with Cu K α radiation ($\lambda = 1.54$ Å) as the X-ray source. Surface Morphology and microstructure of the samples were characterized by field emission scanning electron microscopy (FESEM, Hitachi SU8220) and field emission transmission electron microscope (FETEM, FEI Talos F200S). Surface chemistry and elemental composition were characterized by X-ray photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB 250Xi) with Al Kα radiation. Raman spectra were carried out on a LabRAM HR Evolution Raman microscope with 532 nm wavelength excitation laser. N₂ adsorption-desorption isotherms were measured by the Brunauer-Emmett-Teller (BET, Micrometrics ASAP 2460) method. Weight ratio of V and Ti elements in the sample were analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES, Optima 4300DV).

Electrochemical Measurements: All electrochemical measurements were performed on a PGSTAT302N potentiostat/galvanostat (Metrohm Autolab, Netherlands) workstation equipped with a three-electrode setup. A glassy-carbon (GC) rotating disk electrode (RDE) (d = 5.0 mm) was used as working electrode, while a reversible hydrogen electrode (RHE) and a graphite rod were used as the reference and counter electrodes, respectively. First, the catalyst ink was prepared by ultrasonically dispersing the mixture of the catalyst (5 mg), ethanol (500 μ L), deionized water (490 μ L) and Nafion (10 μ L, 5 wt%) for 30 min to form a uniform suspension. Next, 10 μ L of the catalyst dispersion was then carefully dropped onto a GC electrode and dried under atmospheric conditions. For comparison, the commercial IrO₂ and Pt/C (20%) with the similar mass loading were also prepared as benchmark OER and HER catalysts, respectively. Prior to the measurement, the electrolyte (1.0 M KOH) was purged with high purity O₂ or Ar flow for 30 min and maintained during the measurement to ensure continuous gas saturation. Linear sweep voltammograms (LSV) for both OER and HER were measured at a scan rate of 5 mV s⁻¹ and corrected with 95% iR compensation. The electrochemical double-layer capacitance (C_{dl}) was

measured from cyclic voltammogram method in a potential range without apparent faradaic process at various scan rates ranging from 10 to 100 mV s⁻¹. Electrochemical impedance spectra (EIS) measurements were carried out over a frequency range from 0.1 Hz to 100 kHz by applying an AC potential with 5 mV amplitude. The long-term stability was recorded by a chronopotentiometry measurement at a constant current density of ±10 mA cm⁻². The overall water splitting measurement was carried out in a two-electrode system using the VOOH/Ti₃C₂T_x MXene as a bifunctional catalyst with a loading of 2 mg cm⁻² on CP as both the cathode and anode in Ar-saturated 1.0 M KOH. For comparison, the physical mixture of VOOH and Ti₃C₂T_x MXene (denoted as VOOH@Ti₃C₂T_x MXene) was prepared by mechanically mixing VOOH powders (134.4 mg) and Ti₃C₂T_x MXene (30 mg) in an argon-filled glovebox using a mortar at room temperature. The catalytic performance of VOOH@Ti₃C₂T_x MXene was also tested for better comparison.

Figure S1. SEM image of $Ti_3C_2T_x$ Mxene.

Figure S2. TEM image of $Ti_3C_2T_x$ Mxene.

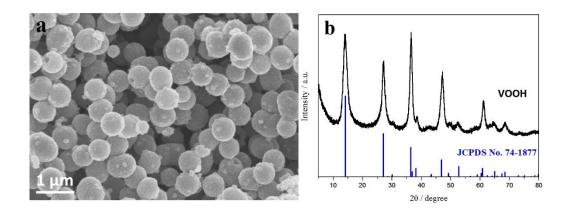
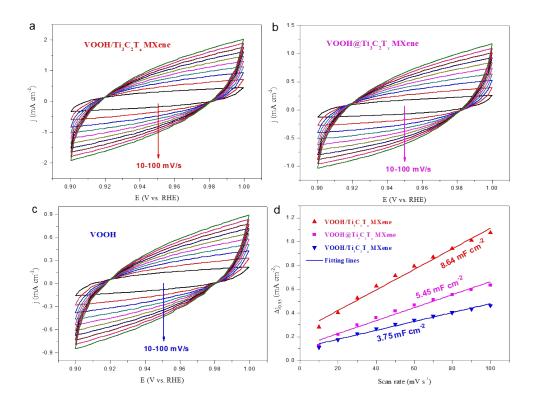



Figure S3. (a) SEM image and (b) the XRD pattern of VOOH.

Figure S4. CV curves for (a) VOOH/Ti₃C₂T_x Mxene, (b) VOOH@Ti₃C₂T_x Mxene and (c) VOOH at different scan rates (10-100 mV s⁻¹). (c) The C_{dl} value of VOOH/Ti₃C₂T_x Mxene, VOOH@Ti₃C₂T_x Mxene and VOOH.

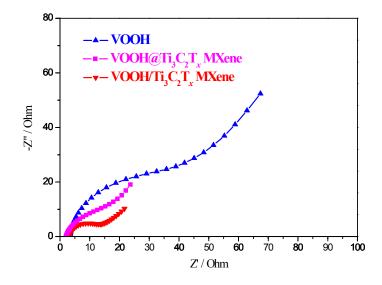


Figure S5. EIS Nyquist Plots of VOOH, VOOH@Ti₃C₂T_x Mxene and

VOOH/Ti₃C₂T_x Mxene for OER.

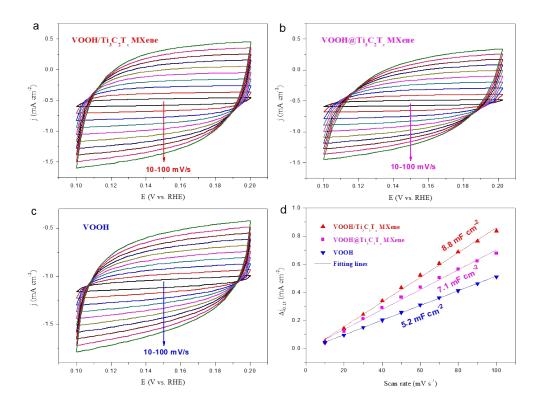


Figure S6. CV curves for (a) VOOH/Ti₃C₂T_x Mxene, (b) VOOH@Ti₃C₂T_x Mxene and (c) VOOH at different scan rates (10-100 mV s⁻¹). (c) The C_{dl} value of VOOH/Ti₃C₂T_x Mxene, VOOH@Ti₃C₂T_x Mxene and VOOH.

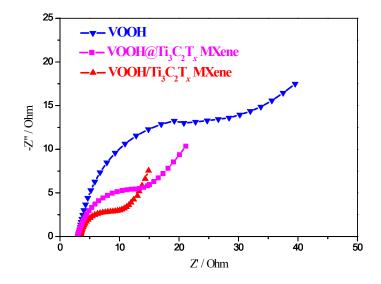
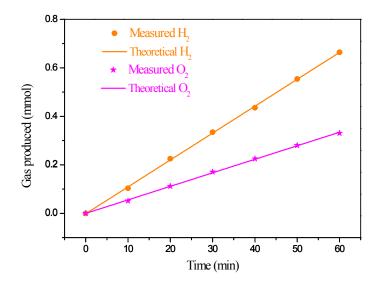
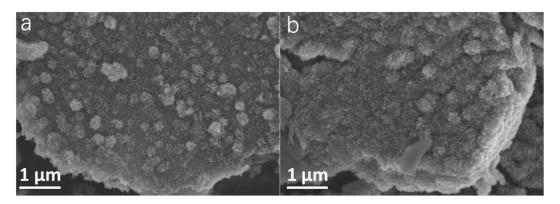
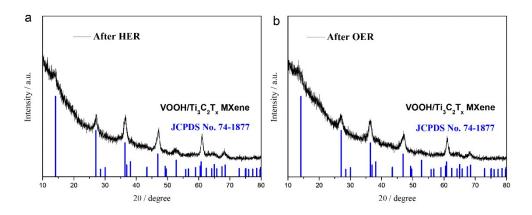


Figure S7. EIS Nyquist Plots of VOOH, VOOH@Ti₃C₂T_x Mxene and

VOOH/Ti₃C₂T_x Mxene for HER.

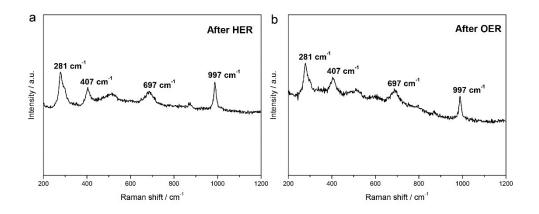

Figure S8. Amount of gas theoretically calculated and experimentally measured vs. time for overall water splitting of VOOH/ $Ti_3C_2T_x$ Mxene.

Figure S9. SEM images of VOOH/Ti₃C₂T_x Mxene after (a) HER and (b) OER measurements.

Figure S10. XRD pattern of VOOH/ $Ti_3C_2T_x$ Mxene after (a) HER and (b) OER measurements.

Figure S11. Raman spectra of VOOH/ $Ti_3C_2T_x$ Mxene after (a) HER and (b) OER measurements.

 η (mV) at Tafel slope Reference Catalyst 10 mA cm⁻² mV dec-1 γ-CoOOH nanosheet 300 38 Angew. Chem. Int. Ed. 2015, 54, 8722 80 NiPS₃@NiOOH 350^a ACS Catal. 2017, 7, 229 Fe-CoOOH/G 37 Adv. Energy Mater. 2017, 7, 1602148 330 VOOH 270 68 Angew. Chem. Int. Ed. 2017, 56, 573 Angew. Chem. Int. Ed. 2018, 57, 15471 F-CoOOH/NF 270 54 Zn-CoOOH/NF 270 44 Nano Energy 2018, 53, 144 δ-FeOOH NSs/NF 265 68 Adv. Mater. 2018, 30, 1803144 $Co-Bi/Ti_3C_2T_x$ MXene 250 53 ChemSusChem 2018, 11, 3758 BP QDs/MXene 360 64.3 J. Mater. Chem. A 2018, 6, 21255 Chem. Commun. 2019, 55, 1237 Co₃O₄ QDs/MXene 340 63.97 CoP/Ti₃C₂ MXene 50 J. Mater. Chem. A 2019, 7, 27383 230 NiFe-LDH/MXene/NF 43 Nano Energy 2019, 63, 103880 229 $Ti_{3}C_{1.6}N_{0.4}$ 450 216.4 Nanoscale Adv. 2020, 2, 1187 $M_3OOH@V_4C_3T_x$ MXene 275.2 51.4 InfoMat. 2020, 2, 1 FeOOH NSs/Ti₃C₂ MXene 400 95 ChemistrySelect 2020, 5, 1890 Co₃O₄/MXene 300 118 Sci. Bull. 2020, 65, 460 FeCo-LDH/MXene 268 85 ChemNanoMat 2020, 6, 154 VOOH/Ti₃C₂T_x Mxene 238 81.6 This work

Table S1. A comparison of OER performances of VOOH/Ti₃C₂T_x Mxene with recently reported electrocatalysts in 1.0 M KOH.

a: 0.1 M KOH

Catalyst	η (mV) at 10 mA cm ⁻²	Tafel slope mV dec ⁻¹	Reference
VOOH	164	104	Angew. Chem. Int. Ed. 2017, 56, 573
Cu@CoFe LDH	171	36.4	Nano Energy 2017 , 41, 327
BP QDs/MXene	190	83	J. Mater. Chem. A 2018, 6, 21255
CoP@3D Ti ₃ C ₂ -MXene	168	58	ACS Nano 2018, 12, 8017
Co-Fe oxyphosphide	180	62	Adv. Sci. 2019, 6, 1900576
FeCoNi (Oxy)hydroxide	150	107	Adv. Energy Mater. 2019, 9, 1901312
NiS ₂ /V-MXene	179	85	J. Catal. 2019, 375, 8
CoP/Ti ₃ C ₂ MXene	113	57	J. Mater. Chem. A 2019, 7, 27383
NiFe-LDH/MXene/NF	132	70	Nano Energy 2019 , 63, 103880
VS ₂ @V ₂ C MXene	164	47.6	Nanoscale 2020 , 12, 6176
Co^{3+} @3D-Nb ₂ CT _x MXene	236	123	Adv. Sci. 2020, 7, 1903680
$MoS_2@Mo_2CT_x$	176	207	CrystEngComm 2020, 22, 1395
IrCo@ac-Ti ₃ C ₂	135	56	ChemSusChem 2020, 13, 945
2.5% Pt@2D MXene	103	52	Adv. Funct. Mater. 2020 , 30, 1910028
VOOH/Ti ₃ C ₂ T _x Mxene	100	81.8	This work

Table S2. A comparison of HER performances of VOOH/ $Ti_3C_2T_x$ Mxene with recently reported electrocatalysts in 1.0 M KOH.

Catalyst	Potential (V) at 10 mA cm ⁻²	Reference
VOOH	1.62	Angew. Chem. Int. Ed. 2017, 56, 573
δ-FeOOH NSs/NF	1.62	Adv. Mater. 2018, 30, 1803144
BP QDs/MXene	1.78	J. Mater. Chem. A 2018, 6, 21255
Ni _{0.7} Fe _{0.3} PS ₃ @MXene	1.65	Adv. Energy Mater. 2018, 8, 1801127
Ni _{0.9} Fe _{0.1} PS ₃ @MXene		
CoP@3D Ti ₃ C ₂ -MXene	1.565	ACS Nano 2018, 12, 8017
CoP/MXene	1.56	J. Mater. Chem. A 2019, 7, 27383
γ-CrOOH/NF	1.56	Inorg. Chem. 2019, 58, 4014
NiFe-LDH/MXene/NF	1.51	Nano Energy 2019 , 63, 103880
1T/2H MoSe ₂ /MXene	1.64	Electrochim. Acta 2019, 326, 134976
Ni ₃ S ₂ @MoS ₂ /FeOOH	1.57	Appl. Catal. B: Environ. 2019, 244, 1004
FeOOH/Ni ₃ N/CC	1.58	Appl. Catal. B: Environ. 2020, 269, 118600
Ni _{0.8} Fe _{0.2} -AHNA Ni	1.41	Energy Environ. Sci. 2020, 13, 86
VOOH/Ti ₃ C ₂ T _x Mxene	1.579	This work

Table S3. A comparison of VOOH/ $Ti_3C_2T_x$ Mxene with recently reported bifunctional electrocatalysts in the performance for overall water splitting.