Polyoxometalate@covalent triazine framework as robust

electrocatalyst for selective benzyl alcohol oxidation coupled

hydrogen production

Zhen Li, Junhao Zhang, Xiaoting Jing, Jing Dong, Huifang Liu, Hongjin Lv*, Yingnan Chi*,

Changwen Hu

Contents

Fig. S1. ¹ H NMR spectrum of monomer recorded at 298 K in DMSO2
Fig. S2. ¹³ C CP-MAS solid state NMR spectra of CTF
Fig. S3. Images of $PMo_{10}V_2$ aqueous solution (left) and $PMo_{10}V_2$ solution after adding
CTF (right)
Fig. S4. PXRD data of PMo ₁₀ V ₂ (red), CTF (blue), and PMo ₁₀ V ₂ @CTF (green)
Fig. S5. Raman spectra of CTF and PMo ₁₀ V ₂ @CTF3
Fig. S6. XPS spectrum of CTF4
Fig. S7. Survey XPS spectrum of PMo ₁₀ V ₂ @CTF4
Fig. S8. XPS P 2p spectra of PMo ₁₀ V ₂ and PMo ₁₀ V ₂ @CTF4
Fig. S9. XPS N 1s spectra of CTF
Fig. S10. ³¹ P CP/MAS solid-state NMR spectra of PMo ₁₀ V ₂ and PMo ₁₀ V ₂ @CTF5
Fig. S11. Liquid-phase UV-vis spectra from leaching test of PMo ₁₀ V ₂ @CTF immersed
in water/acetonitrile solution for 8h6
Fig. S12. SEM image of PMo ₁₀ V ₂ @CTF6
Fig. S13. N2 adsorption and desorption isotherms for CTF and $\text{PMo}_{10}\text{V}_2\text{@CTF}$
measured at 77 K6
Fig. S14. The pore size distributions (PSD) curves of CTF and PMo ₁₀ V ₂ @CTF7
Fig. S15. CVs of CTF without BA, or with 0.6 mmol BA7
Fig. S16. Gas chromatogram of benzyl alcohol oxidation7
Fig. S17. FT-IR spectra of $PMo_{10}V_2@CTF$ immersed in the reaction solution for 7 days.
Fig. S18. UV-vis spectra of postreaction solution, benzyl alcohol, benzyl aldehyde, and
PMo ₁₀ V ₂ 8
Fig. S19. FT-IR spectra of PMo ₁₀ V ₂ @CTF before and after electrocatalytic reaction8
Fig. S20. CV curves data of the Entry 2-69
Fig. S21. Adsorption of benzyl alcohol by PMo ₁₀ V ₂ @CTF9
Fig. S22. Thermogravimetric analysis of CTF, $PMo_{10}V_2$, and $PMo_{10}V_2$ @CTF. The catalyst
was heated from room temperature to 800°C in N_2 atmosphere at 5°C/ min9
Table S1 . BET surface area of different material supported polyoxometalates (POMs).
Table S2.Surface area and porosity data of CTF and PMo10V2@CTF.10
Table S3. Electrocatalytic oxidation of benzyl alcohol by different electrode materials.

Fig. S2.¹³C CP-MAS solid state NMR spectra of CTF.

Fig. S3. Images of $PMo_{10}V_2$ aqueous solution (left) and $PMo_{10}V_2$ solution after adding

CTF (right).

Fig. S4. PXRD data of PMo₁₀V₂ (red), CTF (blue), and PMo₁₀V₂@CTF (green).

Fig. S5. Raman spectra of CTF and PMo₁₀V₂@CTF.

Fig. S6. XPS spectrum of CTF.

Fig. S7. Survey XPS spectrum of PMo₁₀V₂@CTF.

Fig. S8. XPS P 2p spectra of $PMo_{10}V_2$ and $PMo_{10}V_2@CTF$.

Fig. S9. XPS N 1s spectra of CTF. The XPS N 1s spectrum of CTF can be deconvoluted into five peaks at 398.4 eV, 399.7 eV, 400.7 eV, 401.9 eV and 405.4 eV which are assigned to triazinic N, imidazolium N, graphitic N, imidazolium N⁺ and absorbed N, respectively.

Fig. S10. ³¹P CP/MAS solid-state NMR spectra of $PMo_{10}V_2$ and $PMo_{10}V_2@CTF$.

Fig. S11. Liquid-phase UV-vis spectra from leaching test of **PMo₁₀V₂@CTF** immersed in water/acetonitrile solution for 8h.

Fig. S12. SEM image of PMo₁₀V₂@CTF.

Fig. S13. N2 adsorption and desorption isotherms for CTF and PMo₁₀V₂@CTF measured at 77 K.

Fig. S14. The pore size distributions (PSD) curves of CTF and PMo₁₀V₂@CTF.

Fig S15. CV curves of CTF in acetonitrile containing $LiClO_4$ (1.5 mmol) without benzyl alcohol (BA) and with 0.6 mmol BA, obtained at carbon cloth working electrode with a scan rate of 50 mV s⁻¹.

Fig. S16. Gas chromatogram of benzyl alcohol oxidation.

Fig. S17. FT-IR spectra of PMo₁₀V₂@CTF immersed in the reaction solution for 7 days.

Fig. S18. UV-vis spectra of postreaction solution, benzyl alcohol, benzyl aldehyde,

and PMo₁₀V₂.

Fig. S19. FT-IR spectra of PMo₁₀V₂@CTF before and after electrocatalytic reaction.

Fig. S20. CV curves of **PMo₁₀V₂@CTF** without benzylic alcohols (blue lines) and with 0.6 mmol benzylic alcohols (red lines) in acetonitrile containing LiClO₄ (1.5 mmol) and Et₃N (0.18 mmol) obtained at carbon cloth working electrode modified with **PMo₁₀V₂@CTF** (0.3 mg/cm²) with a scan rate of 50 mV s⁻¹.

Fig. S21. Adsorption of benzyl alcohol by PMo₁₀V₂@CTF.

Fig. S22. Thermogravimetric analysis of CTF, PMo₁₀V₂, and PMo₁₀V₂@CTF.

Table S1. BET surface area of different materia	al supported polyoxometalates (POMs).
---	---------------------------------	--------

Entry	Material	Surface area (m ² g ⁻¹)	Reference
1	PMo ₁₀ V ₂ @CTF	399	This work
2	POM@ZIF-8 ^[a]	411	1
3	CsPW-HMS ^[b]	117	2
4	NENU-500 ^[c]	195	3
5	Mg_3AI -ILs- C_8 -La W_{10} ^[d]	63	4
6	PMo/BzPN-SiO ₂ ^[e]	122	5
7	SiO ₂ @C-dots/QPW5501	110	6
8	V ₈ @iPAF-1 ^[g]	670	7
9	EB-COF:PW ₁₂ ^[h]	8	8

[a] POM : $H_6CoW_{12}O_{40}$

[b] CsPW: Cs_{2.5}H_{0.5}PW₁₂O₄₀

[c] NENU-500: $[TBA]_3[\epsilon - PMoV_8MoV_4O_{36}(OH)_4Zn_4][BTB]_{4/3} \cdot xGuest$ (BTB = benzene tribenzoate, TBA⁺ = tetrabutylammonium ion)

[d] LaW_{10} : $Na_9LaW_{10}O_{36}$ ·32 H_2O

[e] PMo: H₃PMo₁₂O₄₀

[f] PW5501: Commercial $H_3 PW_{12} O_{40} \left(2 \text{ g} \right)$ was calcined at 550 °C for 1 h

[g] V₈: (NH₄)₅H₆PV₈Mo₄O₄₀

[h] PW_{12} : $H_3PW_{12}O_{40}$

Table S2. Surfac	ce area and por	osity data of CT	F and PMo ₁₀ V ₂ @CTF.
------------------	-----------------	------------------	--

Entry	Material	Surface area (m² g ⁻¹)	Pore size (nm)	Pore volume (cm g ⁻¹)
1	CTF	1154	5.353	1.813
2	PMo ₁₀ V ₂ @CTF	399	4.222	0.582

Entry	Catalysts	Co-catalyst	Conv.	Sele.	Time	FE.	Ref.
1	PMo ₁₀ V ₂ @CTF	none	>99	>99	12 h	96 %	This work
2	h-Ni(OH) ₂	ΤΕΜΡΟ	90	94	40 min	76%	9
3	NC@CuCo ₂ N _x /CF ^[a]	ΤΕΜΡΟ	97	95	80 min	81%	10
4	HP-2 ^[b]	ΤΕΜΡΟ	-	-	-	97 %	11
5	CNT/MOL ^[c]	TEMPO	100	100	100 min	_	12
6	TEMPO-MCM-41 ^[d]	none	100	100	100 min	_	13

Table S3. Electrocatalytic oxidation of benzyl alcohol by different electrode materials.

"- ": there is no corresponding data in the report.

TEMPO: 2,2,6,6-tetramethylpiperidine-N-oxyl

[a] NC@CuCo $_2N_x$ /CF: nitrogen-doped carbon (NC)@CuCo $_2N_x$ /carbon fiber (CF)

[b] HP-2: poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (HP-2)

[c] CNT/MOL: fabricated by Hf-MOF layers and multiwalled carbon nanotubes.

[d] TEMPO-MCM-41: TEMPO-functionalized ordered mesoporous silica (MCM-41)

The conversion of benzyl alcohol, selectivity to aldehyde, Faraday efficiency, reaction time from recent investigations using different electrode materials have been summarized in Table S3. It is found that the good performance of most reported electrocatalytic materials was achieved in the presence of stoichiometric TEMPO, a homogeneous co-catalyst, (entries 2-5). In comparison, there is no TEMPO added in our reaction system and the conversion, selectivity, and Faraday efficiency are comparable to and even better than the reported data. However, the reaction time of our system is longer than previous reports.

Table S4. Electrocatalytic oxidation of benzyl alcohol catalyzed by **PMo₁₀V₂@CTF** in the presence of radical scavengers^{*a*}.

Entry	Scavenger	Conversion (%)	Selectivity (%)	
1	Ph ₂ NH (0.6 mmol)	35	3	
2	tert-butyl alcohol (0.6 mmol)	90	80	

^aReaction conditions: BA (0.6 mmol), anhydrous acetonitrile (10 mL), Et₃N (0.18 mmol), and LiClO₄ (1.5 mmol) at ambient conditions for 12 h with the potential of 1.6 V vs. Ag/Ag⁺

Reference

- S. Mukhopadhyay, J. Debgupta, C. Singh, A. Kar and S. K. Das, *Angew Chem Int Ed Engl*, 2018, 57, 1918-1923.
- 2. T. Okada, K. Miyamoto, T. Sakai and S. Mishima, ACS Catalysis, 2013, 4, 73-78.
- J. S. Qin, D. Y. Du, W. Guan, X. J. Bo, Y. F. Li, L. P. Guo, Z. M. Su, Y. Y. Wang, Y. Q. Lan and H. C. Zhou, J. Am. Chem. Soc., 2015, 137, 7169-7177.
- 4. Z. W. Tengfei Li, Wei Chen, Haralampos N. Miras, and Yu-Fei Song, *Chemistry A European Journal*, 2017, **23**, 1069-1077.
- M. Craven, D. Xiao, C. Kunstmann-Olsen, E. F. Kozhevnikova, F. Blanc, A. Steiner and I. V. Kozhevnikov, *Applied Catalysis B: Environmental*, 2018, 231, 82-91.
- 6. Y. Zhang and R. Wang, *Applied Catalysis B: Environmental*, 2018, 234, 247-259.
- J. Song, Y. Li, P. Cao, X. Jing, M. Faheem, Y. Matsuo, Y. Zhu, Y. Tian, X. Wang and G. Zhu, *Adv. Mater.*, 2019, **31**, e1902444.
- H. Ma, B. Liu, B. Li, L. Zhang, Y. G. Li, H. Q. Tan, H. Y. Zang and G. Zhu, J. Am. Chem. Soc., 2016, 138, 5897-5903.
- X. Chen, X. Zhong, B. Yuan, S. Li, Y. Gu, Q. Zhang, G. Zhuang, X. Li, S. Deng and J.-g. Wang, Green Chemistry, 2019, 21, 578-588.
- J. Zheng, X. Chen, X. Zhong, S. Li, T. Liu, G. Zhuang, X. Li, S. Deng, D. Mei and J.-G. Wang, *Adv. Funct. Mater.*, 2017, 27, 1704169.
- 11. B. Schille, N. O. Giltzau and R. Francke, Angew Chem Int Ed Engl, 2018, 57, 422-426.
- 12. L. Yang, L. Cao, R. Huang, Z. W. Hou, X. Y. Qian, B. An, H. C. Xu, W. Lin and C. Wang, *ACS Appl Mater Interfaces*, 2018, **10**, 36290-36296.
- 13. B. Karimi, M. Rafiee, S. Alizadeh and H. Vali, Green Chemistry, 2015, 17, 991-1000.