Supplementary Information

$Branch-like\ Mo-doped\ Ni_3S_2\ nanoforest\ as\ high-efficiency\ and\ durable\ catalyst\ for\ overall$

urea electrolysis

Han Xu,† Yu Liao,† Zhifei Gao, Yan Qing, Yiqiang Wu, and Liaoyuan Xia*

Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China

E-mail: xly1516@126.com (L.Y. Xia)

† These authors contributed equally to this work.

Section 1. Theoretical calculation

1.1 Computation details. All DFT computations were carried out using the Vienna ab initio simulation package (VSVP). The ion-electron interactions were described by using the projector augmented wave (PAW) method. The exchange-correlation energy was evaluated by the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) function. The cut-off energy was set to 400 eV for plane wave expansion. Furthermore, the Brillouin zone was sampled by ($4\times3\times1$) Monkhorst-Pack K-point grid, and a vacuum space of 12 Å was placed along Z axis to avoid the interaction among the slabs. In the slab calculations, the atoms on the top layer of the slab could relax during the optimization of overall adsorption structure, and the other atoms were immobilized. The atomic relaxation will be stopped as soon as the total energy tolerance was converged to 10^{-5} eV and the changes of the force on atoms less than 0.01 eV/Å.

1.2 Slab models for (110) facet of Ni_3S_2 and Mo-doped Ni_3S_2 . According to the XRD patterns and HRTEM images of the samples, we particularly chosen the (110) facet of Ni_3S_2 and Mo-doped Ni_3S_2 for further computations discussions. The Ni_3S_2 (110) surface was constructed by cleaving the optimized bulk structure through the corresponding planes (Fig. S6a). In this model, one Ni atom was randomly replaced by Mo atom, which formed the model of Mo-doped Ni_3S_2 (Fig. S6b).

1.3 The free-energy computations of NH_2^* and CO* adsorption during UOR. The key intermediates during the UOR should be NH_2^* and CO*, and these key adsorbates are formed through the following reaction, wherein * represent the adsorbed intermediate on the surface:

$$CO(NH_2)_{2(aq)} \rightarrow CO(NH_2)_2^*$$
 (S1)

$$CO(NH_2)_2^* \rightarrow CO^* + 2NH_2^*$$
(S2)

$$\mathrm{CO}^* + 2\mathrm{OH}^- \to \mathrm{CO}_{2(\mathrm{g})} + \mathrm{H}_2\mathrm{O}_{(\mathrm{l})} + 2\mathrm{e}^- \tag{S3}$$

$$2NH_2^* + 4OH^- \rightarrow N_{2(g)} + 4H_2O_{(1)} + 4e^-$$
 (S4)

In the UOR process, based on post-processing experiment and characterization results, an in-situ surface conversion of Ni₃S₂ into NiOOH takes place during UOR. Thus, the Mo-doped Ni₃S₂ are mimicked by an adsorbed doping metal atom on NiOOH. We studied the structures and energetics of the molecular and dissociative adsorption of urea on NiOOH and Mo-doped NiOOH surface. Fig. S11 present several stable configurations of urea molecular and dissociative adsorption free energy (Δ G) was calculated as the description to evaluate the UOR performance of various catalysts and using the following equation (Eqn. S5).

$$\Delta G = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S \tag{S5}$$

Where ΔE_{ads} is the adsorption energy defined as the electronic energy difference; T is the temperature (T=298.15 K), ΔE_{ZPE} and ΔS are the contributions to the free energy from the zero-point vibration energy and entropy, respectively.

Section 2. Figures and curves

Fig. S1. SEM images of (a) Ni_3S_2 and (b) Mo-doped Ni_3S_2 .

Fig. S2. Adsorption/desorption isotherms of bare Ni foam (the inset shows the corresponding pore size distribution pattern).

Fig. S3. (a) TEM image of Ni_3S_2 . SAED patterns of (b) Mo-doped Ni_3S_2 and (c) Ni_3S_2 , respectively.

Fig. S4. (a) HRTEM image of Ni_3S_2 . (b) The lattice spacing corresponding to the selected areas in panel (a).

Fig. S5. (a) XPS survey pattern of obtained samples. (b) The high-resolution Ni 2p spectra.

Fig. S6. Theoretical structure models of (a) pure Ni_3S_2 and (b) Mo-doped Ni_3S_2 . (c) The calculated total density of states for pure Ni_3S_2 and Mo-doped Ni_3S_2 . (The yellow, gray and blue balls represent the sulfur, nickel and molybdenum atoms, respectively)

Fig. S7. (a) LSV curves of Mo-doped Ni_3S_2 with different S/Mo molar ratio in 1.0 M KOH with 0.3 M urea, (b) the corresponding Tafel slopes.

Fig. S8. Nyquist plots of Mo-doped Ni_3S_2 in 1.0 M KOH (a) with 0.3 M urea and (b) without urea.

Fig. S9. Cyclic voltammograms curves of (a) Mo-doped Ni_3S_2 , (b) Ni_3S_2 , and (c) bare NF obtained at 0.7~0.8 V (*vs.* RHE) with various scan rates (in the direction as indicated by the arrow: 5, 10, 20, 40, 60, 80 and 100 mV s⁻¹) in 1.0 M KOH with 0.3 M urea.

Fig. S10. (a) UOR and (b) HER polarization curves of Mo-doped Ni_3S_2 and Ni_3S_2 normalized by the ECSA.

Fig. S11. Optimized structure of urea molecular dissociative adsorption on (a, b, c, d) NiOOH surface and (e, f, g, h) Mo-doped NiOOH surface (The gray and blue balls represent the nickel and molybdenum atoms, respectively. The brown, green, brown, red and pink balls represent the carbon, nitrogen, oxygen and hydrogen atoms, respectively).

Fig. S12. (a) UOR and (b) HER long-time stability test of Mo-doped Ni_3S_2 at a constant current density of 100 mA cm⁻² and -100 mA cm⁻², respectively.

Fig. S13. SEM and TEM images of Mo-doped Ni_3S_2 after (a, b) UOR and (c, d) HER long-term stability test.

Fig. S14. (a) STEM image and (b-d) the corresponding element mappings of the Mo-doped Ni_3S_2 after UOR long-time stability test.

Fig. S15. (a) Ni 2p, (b) S 2s, (c) Mo 3d and (d) O 1s high-resolution XPS spectra of Mo-doped Ni_3S_2 before and after UOR and HER test.

Fig. S16. XRD patterns of Mo-doped Ni_3S_2 after UOR and HER stability test.

Fig. S17. SEM images the Ni_3S_2 after (a) UOR and (b) HER stability test.

Fig. S18. Cyclic voltammograms curves of (a) Mo-doped Ni₃S₂, (b) Ni₃S₂, and (c) bare NF obtained at $0.7\sim0.8$ V (*vs.* RHE) with various scan rates (in the direction as indicated by the arrow: 5, 10, 20, 40, 60, 80 and 100 mV s⁻¹) in 1.0 M KOH. (d) Plots of capacitive currents as a function of scan rate for different catalysts.

Section 3. Tables

Catalytic material	Electrolyte	Potential (V vs. RHE)	Tafel slope (mV dec ⁻¹)	References
Mo-doped Ni ₃ S ₂	1.0 M KOH	1.33 @ 10 mA cm ⁻²	29.05	
	0.3 M urea	1.37 @ 100 mA cm ⁻²	28.05	This Work
	1.0 M KOH 0.3 M urea	1.37 @ 10 mA cm ⁻²	35.44	This Work
Pt/C		1.45 @ 100 mA cm ⁻²		
	1.0 M KOH	1.38@10 mA cm ⁻²		I Mator Cham 4 2018 6
Ni ₃ Se ₄ nanorod/NF	0.5 M urea	~1.44@100 mA cm ⁻²	N.A.	15653
	1 0 M KOH	1.36@10 mA cm ⁻²		Nano Energy, 2019 , 60, 894
Ni-Mo nanotube/NF	0.1 M urea	~1.42@100 mA cm ⁻²	55	
	1 0 M KOH	1.37@ 10 mA cm ⁻²	19	Energy Environ. Sci., 2018 , 11, 1890
NiMoO-Ar/NF	0.5 M urea	1.42 @ 100 mA cm ⁻²		
	1.0 M KOH	~1.38@10 mA cm ⁻²	N.A.	ACS Appl. Mater. Interfaces, 2018 , 10, 4750
N1/C	0.33 M urea	2.0@ 100 mA cm ⁻²		
	1.0 M KOH	~1.37@10 mA cm ⁻²	72	J. Mater. Chem. A., 2017 , 5, 7825
MnO ₂ /MnCo ₂ O ₄ /N1	0.5 M urea	~1.47@ 100 mA cm ⁻²		
	1.0 M KOH 0.33 M urea	~1.38@10 mA cm ⁻²	N.A.	<i>Electrochim. Acta</i> , 2019 , 304, 131
NF@p-Ni		~1.57@100 mA cm ⁻²		
	1 0 M KOH	1.37@10 mA cm ⁻²	N.A.	<i>Chem. Commun.</i> , 2017 , 53, 10906
Ni-MOF/NF	0.5 M urea	~1.56@100 mA cm ⁻²		
Ni(OH)2NS@NW/NF	1.0 M KOH 0.33 M urea	1.40@10 mA cm ⁻²	47	Electrochim. Acta, 2018 , 268, 211
		N.A.		
Fe _{11.1%} -Ni ₃ S ₂ /Ni foam	1.0 M KOH	$\sim 1.35@10 \text{ mA cm}^{-2}$	N.A.	J. Mater. Chem. A, 2018 , 6,
	0.33 M urea	1.39@100 mA cm ⁻²		4346
SL Ni(OH) ₂ NS/CC	1.0 M KOH	~1.37@10 mA cm ⁻²	N.A. <i>J. Mater. Chem.</i> 1386	J. Mater. Chem. A., 2018, 6,
× /-	0.33 M urea	~1.40@100 mA cm ⁻²		13867

Catalytic material	C _{dl} (mF cm ⁻²) _{for UOR}	C _{dl} (mF cm ⁻²) _{for HER}
bare NF	1.28	1.29
Ni ₃ S ₂	17.73	19.63
Mo-doped Ni ₃ S ₂	33.51	35.03

Table S2. List of C_{dl} values of bare NF, Ni₃S₂ and Mo-doped Ni₃S₂.

Table S3. Comparison of UOR intrinsic activity for Mo-doped Ni_3S_2 with several recently reported earth-abundant transition-metal-based electrocatalysts in the alkaline media.

Catalytic material	Mass loading (mg cm ⁻¹)	j _{ECSA} (mA cm ⁻¹)	Potential (V vs. RHE)	References
Mo-doped Ni ₃ S ₂	12	2	1.36	This Work
Ni ₃ Se ₄ nanorod/NF	1.0	2	1.41	J. Mater. Chem. A., 2018 , 6, 15653
NiMoO-Ar/NF	5.1	2	1.38	Energy Environ. Sci., 2018 , 11, 1890
FQD/CoNi-LDH/NF	0.98	2	1.42	Chem. Eng. J., 2020, 390 , 124525
NiTe/rGO/NF	3.0	2	1.40	ACS Appl. Energy Mater., 2019, 2 , 3363
MnCo ₂ O _{4.5} @Ni(OH) ₂ /NF	N.A.	2	1.37	<i>Chem. Eng. J.</i> , 2020 , 381, 122603

Catalytic material	Substrate	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Reference
Mo-doped Ni ₃ S ₂	УГ. С	90 @ -10 mA cm ⁻²	81.66	This Work
	Ni foam	172@ -100 mA cm ⁻²		
Dt/C	Ni foom	15@ -10 mA cm ⁻²	28.8	This Work
Pt/C	INI IOalii	77@ -100 mA cm ⁻²		
CoMONIS NE 21	Ni foom	113 @ -10 mA cm ⁻²	95	J. Am. Chem. Soc., 2019 , 141, 10417
COMONIS-INF-51	INI IOalli	N.A.	85	
Ni S @MoS /FeOOH	Ni foam	95 @ -10 mA cm ⁻²	95	Appl. Catal. B: Environ., 2019,
N1352@N1052/140011	INI IOalli	${\sim}170$ @ -100 mA cm ${}^{-2}$	85	244, 1004
		118 @ -10 mA cm ⁻²	65	J. Mater. Chem. A., 2018 , 6, 20491
$N_{13}S_2(a)MOS_x/N_1O$	Ni foam	~ 260 @ -100 mA cm ⁻²		
		130.6 @ -10 mA cm ⁻²	112.7	Dalton Trans., 2019,48, 12186
Fe-MoS ₂ /Ni ₃ S ₂ /NF-2	Ni foam	~290 @ -100 mA cm ⁻²		
Ni MoS	carbon	98 @ -10 mA cm ⁻²	75	Nano Energy, 2018 , 53, 458
NI_{SA} - $NIOS_2$	cloth	N.A.		
(Ni Fa)S @Mas	carbon	130 @ -10 mA cm ⁻²	101.22	Appl. Catal. B: Environ., 2019 , 247, 107
$(101, 12)5_2(0,1005_2)$	cloth	${\sim}280$ @ -100 mA cm ${}^{-2}$		
MoSNi-S- HNRs	Ni foam	98 @ -10 mA cm ⁻²	61	ACS Catal., 2017, 7, 2357
10052 101352 1110135	i ti ioani	~190 @ -100 mA cm ⁻²		
MoS_2/Ni_3S_2 Heterostructures	Ni foam	110 @ -10 mA cm ⁻²	83.1	Angew. Chem. Int. Edit., 2016,
	i ti iouin	N.A.		55, 6702
Co S /Ni S	Ni foam	128 @ -10 mA cm ⁻²	97.6	Appl. Catal. B: Environ., 2019 , 253, 246
0908/111302	INI IOAIII	~ 220 @ -100 mA cm ⁻²		
Fe _{11.1%} -Ni ₃ S ₂ /Ni foam	Ni foam	$\frac{126@ -10 \text{ mA cm}^{-2}}{\sim 240 @ -100 \text{ mA cm}^{-2}}$	89	J. Mater. Chem. A, 2018 , 6, 4346

Table S4. Comparison of HER performance for Mo-doped Ni_3S_2 with various recently reported electrocatalysts in the alkaline media (1.0 M KOH).

Catalytic material	Mass loading (mg cm ⁻²)	j _{ECSA} (mA cm ⁻¹)	Overpotential (mV)	Reference
Mo-doped Ni_3S_2	12	2	152	This Work
δ-FeOOH/Ni ₃ S ₂ /NF	2.5	2	170	J. Mater. Chem. A., 2020 , 8, 21199
Ni(OH)2-NiMoOx/NF	N.A.	2	>200	Adv. Energy Mater., 2019 , 9, 1902703
CoP/NPC/TF	1.5	2	160	Adv. Energy Mater., 2019 , 0, 1803970
MoS ₂ –Ni ₃ S ₂ HNRs	13	2	175	ACS Catal., 2017, 7, 2357
Mo-Ni ₃ S ₂ /Ni _x P _y	3.15	2	>160	Adv Energy Mater., 2020 , 10, 1903891.

Table S5. Comparison of HER intrinsic activity for Mo-doped Ni_3S_2 with several recently reported earth-abundant transition-metal-based electrocatalysts in the alkaline media.

Table S6. Comparison of the overall urea-electrolysis efficiency for Mo-doped Ni_3S_2 with other newly-reported highly active bifunctional catalysts.

Catalytic material	Electrolyte	Voltage @10 mA cm ⁻² (V)	Operation time	Reference
Mo-doped Ni ₃ S ₂	1.0 M KOH 0.3 M urea	1.45	120 h	This Work
HC-NiMoS/Ti	1.0 M KOH 0.5 M urea	1.59	10 h	Nano Research, 2018 , 11, 988
Ni/C	1.0 M KOH 0.33 M urea	1.60	12 h	ACS Appl. Mater. Inter., 2018, 10, 4750
Ni-Mo nanotube	1.0 M KOH 0.1 M urea	1.43	10 h	Nano Energy, 2019, 60, 894
MnO ₂ /MnCo ₂ O ₄ /Ni	1.0 M KOH 0.5 M urea	1.55	15 h	J. Mater. Chem. A, 2017 , 5, 7825
NiCoFe LDH/NF	1.0 M KOH 0.33 M urea	1.49	50 h	ACS Sustain. Chem. Eng., 2019 , 7, 10035
CoMn/CoMn ₂ O ₄	1.0 M KOH 0.5 M urea	1.51	15 h	Adv. Funct. Mater., 2020, 2000556
Fe _{11.1%} -Ni ₃ S ₂ /Ni foam	1.0 M KOH 0.5 M urea	1.46	22 h	J. Mater. Chem. A, 2018 , 6, 4346
NiCo ₂ S ₄ NS/CC	1.0 M KOH 0.33 M urea	1.49	20 h	ACS Sustain. Chem. Eng., 2018 , 6, 5011
CoS ₂ /Ti mesh	1.0 M KOH 0.3 M urea	1.59	$\sim 4.2 \text{ h}$	Electrochim. Acta, 2017, 246, 776
1%Cu:a-Ni(OH) ₂ /NF	1.0 M KOH 0.33 M urea	1.49	40 h	J. Mater. Chem. A, 2019 , 7, 13577