Morphology controlled surface sulfurized CoMn₂O₄ microspikes electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution

Ali Bahadur^{1,2†*}, Waseem Hussain^{3†}, Shahid Iqbal^{4†*}, Farman Ullah², Muhammad Shoaib⁵, Guocong Liu^{4*}, Kejun Feng⁴

¹Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
 ²Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
 ³Department of Physics, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
 ⁴School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong China.
 ⁵Department of Chemistry, Government Postgraduate College Samanabad Faisalabad 38000, Pakistan.

*To whom correspondence should be addressed

shahidiqbal@hzu.edu.cn (Shahid Iqbal) and gcl_109@163.com (Guocong Liu), alibahadur138@snu.ac.kr (Ali Bahadur)

† Authors have equal contribution

Electrocatalyst	Synthesis route	Electrolyte concentration (KOH)	Catalyst Loading (mg cm ⁻²)	Potential mV @ 10 mA cm ⁻² (vs. RHE)	Tafel slope (mV dec ⁻¹)	Reference
10S-CoMn ₂ O ₄ /FTO	Electrodeposition	0.1 M	0.3	300	26.28	This work
CoMn ₂ O ₄ /FTO	Electrodeposition	0.1 M	0.3	310	93.45	This work
CoMn ₂ O ₄ nanodots/rGO	Hot injection & Heating up method	0.1 M	0.319	310	56	[1]
Mn3O4@CoMn ₂ O ₄ - Co _x Oy	One-pot two-step method	0.1 M	275	310	81	[2]
Mn _x Co _{3-x} O ₄ Spinel Oxides	Sol-gel method	1 M	1.3	327	79	[3]
CoMn ₂ O ₄ /N doped porous carbon	Solvothermal	0.1 M	0.33	570	Not given	[4]

 Table S1 OER activity comparison with previously reported CoMn₂O₄ based electrocatalysts.

 Table S2 OER activity comparison with recently reported (2020) oxides based electrocatalysts.

Electrocatalyst	Electrolyte concentration (KOH)	Catalyst Loading (mg cm ⁻²)	Potential mV @ 10 mA cm ⁻² (vs. RHE)	Tafel slope (mV dec ⁻¹)	Reference
10S-CoMn ₂ O ₄ /FTO	0.1 M	0.3	300	26.28	This work
CoMn ₂ O ₄ /FTO	0.1 M	0.3	310	93.45	This work
Ba ₄ Sr ₄ (Co _{0.8} Fe _{0.2}) ₄ O ₁₅	0.1 M	0.232	340	47	[5]
Mixed Ni-Co-Mn oxides	1 M	0.12	400	74	[6]
Defect-rich Cobalt oxide	1 M	0.12	369	46	[7]
Co ₃ O ₄ /MnCO ₃	1 M	Not given	273	62.06	[8]
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	0.1 M	0.26	~480	51.9	[9]
Mn-CoO@Fe(OH) ₃ /NF	1 M	Not given	195	49	[10]
$Co_a Fe_b V_c O_x$	1 M	0.2	249	41	[11]
Co-Fe oxides/carbon paper	1 M	Not given	460	105	[12]
Cobalt Iron oxide nanowires	1 M	0.12	378	54	[13]
Fe _{0.5} Co _{0.5} MoO _{4-x} S _x nanoflowers	1 M	Not given	263	87	[14]
La-doped CoO _x NSs	0.1 M	Not given	353	78.2	[15]

Supplementary Note: 1

Electrocatalytic activity surface area (ECSA) estimation:

ECSA was estimated by equation: ECSA = C_{dl}/C_s , where C_s denotes specific capacitance of 1 cm² of real surface (assumed to be 0.4 mF/cm² in this study) while C_{dl} denotes double-layer capacitance. Cyclic voltammetry was performed at different scan rates (1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 mV/s) in the non-Faradaic region (1.015 -1.065 vs. RHE). ECSA was estimated directly from C_{dl} by plotting Δj ($\Delta j = ja$ -jc) as a function of scan rate.

Figure S1 FTIR spectra of synthesized CoMn₂O₄@FTO substrate.

FTIR spectra displayed absorption bands around 3700 -2690 and 1641 cm⁻¹, attributed to the stretching vibrations of OH and the bending vibrations of H-O-H from water molecules on the surface and this is consistent with the published data.[16] Importantly, the characteristic peak above 500 cm⁻¹ and at 1105.28 cm⁻¹ confirm the spinel structure of the product. Moreover, the absorption band appearing at 401 cm⁻¹ can be ascribed to the vibration of Co-O-Mn.[17]

Figure S2 SEM micrographs of Bare FTO.

Figure S3 High magnification SEM image of Co₃O₄@FTO.

Figure S4 High magnification SEM image of Mn₃O₄@FTO.

Figure S5 High magnification SEM image of Mn₃O₄@FTO.

Figure S6 High magnification SEM image of CoMn₂O₄@FTO.

Figure S7 Low magnification SEM image of CoMn₂O₄@FTO.

Figure S8 OER activity comparison of $CoMn_2O_4$ @FTO before and after stability (24 h at 20 mA cm⁻²) in 0.1 M KOH solution.

Figure S9 Tafel slopes for $CoMn_2O4@FTO$ before and after 24 h stability test in 0.1 M KOH solution.

Table S3 Electrocatalytic OER performance for electrodeposited material at FTO substrate athigher current density values.

Sample	E(mV)	E(mV)	E(mV)	
	vs. RHE at	vs. RHE at	vs. RHE at	
	20 mA cm ⁻²	50 mA cm ⁻²	100 mA cm ⁻²	
CoMn ₂ O ₄	380	420	450	
Co ₂ MnO ₄	370	480	620	
Co ₃ O ₄	530	880	1200	
Mn ₃ O ₄	650	760	880	

Table S4 Electrochemical impedance spectroscopy (EIS) parameters.

Sample	Solution resistance	Charge transfer
	(Rs) / Ω	resistance (Rct) / Ω
Co ₃ O ₄	18.88	15.43
Mn ₃ O ₄	15.63	14.29
Co ₂ MnO ₄	14.22	9.84
CoMn ₂ O ₄	12.12	5.51

Figure S10 Comparison of overpotential (at 10 mA cm⁻²) with varying sulfurization time.

Figure S11 Comparison of overpotential (at 20 mA cm⁻²) with varying sulfurization time.

Figure S12 Nyquist plot of S-CoMn₂O₄@FTO with different sulfurization times (inset shows the circuit diagram).

Figure S13 Nyquist plot of S-CoMn₂O₄@FTOat different biases (inset shows the circuit diagram).

Figure S14 Double-layer capacitance (C_{dl}) and electrochemical surface area calculation by plotting Δj (ja-jc) as a function of scan rate.

Figure S15 HER activity of S-CoMn₂O₄-MFs@FTO in 0.5 M H₂SO₄ solution.

Electrodeposited material (S-CoMn₂O₄-MFs@FTO) was also tested for hydrogen evolution reaction (HER) and the synthesized material showed no or very little HER activity with an overpotential of 380 and 403 mV at 10 mA cm⁻², respectively.

Figure S16 Cross-sectional SEM images of surface sulfurized $CoMn_2O_4$ microspikes (a). STEM image (b) of surface sulfurized $CoMn_2O_4$ microspikes and elemental mapping of (c) Co; (d) Mn; (e) O; (f) S and (g) combine mapping. (h) EDX of surface sulfurized $CoMn_2O_4$ microspikes.

Figure S17 EDX data of CoMn₂O₄ microspikes before (a) and after sulfurization (b).

Figure S18 HRTEM images of surface sulfurized $CoMn_2O_4$ microspikes (a) before (b) and after electrocatalysis reaction .

Figure S19 High-resolution XPS spectra of surface sulfurized $CoMn_2O_4$ microspikes after electrocatalysis reaction. (a) S 2p; (b) Co 2p; (c) Mn 2p; (d) O 1s.

Sr.		Start	Peak	End	Height	FWHM	Area (P)	Area (N)	Atomic
No.). Name	BE	BE	BE	CPS	eV	CPS. eV	TPP-2M	%
1	C 1s	297.96	284.8	279.06	22467.07	1.39	36508.33	511.93	24.24
2	C 1s Scan A	297.96	288.58	279.06	4150.89	1.39	6745.07	94.81	4.49
3	C 1s Scan B	297.96	286.38	279.06	3113.88	1.39	5059.97	71.02	3.36
4	O 1s	544.86	531.2	525.93	81060.53	1.73	170677.21	989.59	46.85
5	Co 2p	811.96	780.84	771.06	26578.41	3.49	211591.87	242.77	11.49
6	Mn 2p	659.96	641.52	632.06	18688.56	3.47	106919.91	158.51	7.5
7	S 2p	174.96	168.16	157.06	1478.75	2.09	6293.72	43.68	2.07

Table S5 XPS data of surface sulfurized CoMn₂O₄ microspikes and actual values of peak area of XPS fitting results.

REFERENCES

- J. Du, C. Chen, F. Cheng, J. Chen, Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn₂O₄ nanodots supported on graphene, Inorg. Chem. (2015). https://doi.org/10.1021/acs.inorgchem.5b00518.
- [2] Z. Luo, E. Irtem, M. Ibánez, R. Nafria, S. MartÍ-Sánchez, A. Genç, M. De La Mata, Y. Liu, D. Cadavid, J. Llorca, J. Arbiol, T. Andreu, J.R. Morante, A. Cabot, Mn₃O₄@CoMn₂O₄-Co_xO_y nanoparticles: Partial cation exchange synthesis and electrocatalytic properties toward the oxygen reduction and evolution reactions, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b02786.

- [3] K. Lankauf, K. Cysewska, J. Karczewski, A. Mielewczyk-Gryń, K. Górnicka, G. Cempura, M. Chen, P. Jasiński, S. Molin, Mn_xCo_{3-x}O₄ spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media, Int. J. Hydrogen Energy. (2020). https://doi.org/10.1016/j.ijhydene.2020.03.188.
- [4] J.L. Digol, M.F.M. Labata, M.F. Divinagracia, J.D. Ocon, CoMn₂O₄ anchored on Ndoped high-dimensional hierarchical porous carbon derived from biomass for bifunctional oxygen electrocatalysis, ECS Trans. (2017). https://doi.org/10.1149/07711.0525ecst.
- [5] Y. Zhu, H.A. Tahini, Z. Hu, Z.G. Chen, W. Zhou, A.C. Komarek, Q. Lin, H.J. Lin, C. Te Chen, Y. Zhong, M.T. Fernández-Díaz, S.C. Smith, H. Wang, M. Liu, Z. Shao, Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide, Adv. Mater. (2020). https://doi.org/10.1002/adma.201905025.
- [6] T. Priamushko, R. Guillet-Nicolas, M. Yu, M. Doyle, C. Weidenthaler, H. Tuÿsüz, F. Kleitz, Nanocast Mixed Ni-Co-Mn oxides with controlled surface and pore structure for electrochemical oxygen evolution reaction, ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c00544.
- [7] M. Yu, F. Waag, C.K. Chan, C. Weidenthaler, S. Barcikowski, H. Tüysüz, Laser Fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction, ChemSusChem. (2020). https://doi.org/10.1002/cssc.201903186.
- [8] G. Yang, B. Zhu, D. Gao, Y. Fu, J. Zhao, J. Li, A Co₃O4/MnCO₃ heterojunction on threedimensional nickel foam for an enhanced oxygen evolution reaction, CrystEngComm. (2020). https://doi.org/10.1039/d0ce00325e.
- [9] D. Huang, J. Yu, Z. Zhang, C. Engtrakul, A. Burrell, M. Zhou, H. Luo, R.C. Tenent,

Enhancing the Electrocatalysis of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ by introducing lithium deficiency for oxygen evolution reaction, ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.9b22438.

- [10] Z. Chen, Z. Hu, D. Zhu, Z. Feng, X. Li, J. Huang, X. Shen, Construction of hierarchical Mn–CoO@Fe(OH)₃ nanofiber array for oxygen evolution reaction, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155560.
- [11] J. Chen, H. Li, Z. Pei, Q. Huang, Z. Yuan, C. Wang, X. Liao, G. Henkelman, Y. Chen, L. Wei, Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction, J. Mater. Chem. A. (2020). https://doi.org/10.1039/d0ta04088f.
- [12] M. Ishizaki, H. Fujii, K. Toshima, H. Tanno, H. Sutoh, M. Kurihara, Preparation of Co-Fe oxides immobilized on carbon paper using water-dispersible Prussian-blue analog nanoparticles and their oxygen evolution reaction (OER) catalytic activities, Inorganica Chim. Acta. (2020). https://doi.org/10.1016/j.ica.2019.119345.
- [13] E. Budiyanto, M. Yu, M. Chen, S. DeBeer, O. Rüdiger, H. Tüysüz, Tailoring morphology and electronic structure of cobalt iron oxide nanowires for electrochemical oxygen evolution reaction, ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c01201.
- B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, R. Wu, Anion-cation co-substitution activation of spinel CoMoO₄ for efficient oxygen evolution reaction, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124926.
- [15] X. Gu, H. Jing, X. Mu, H. Yang, Q. Zhou, S. Yan, S. Liu, C. Chen, La-triggered synthesis of oxygen vacancy-modified cobalt oxide nanosheets for highly efficient oxygen evolution

in alkaline media, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152274.

- [16] F. Chen, Y. Cao, D. Jia, A facile route for the synthesis of ZnS rods with excellent photocatalytic activity, Chem. Eng. J. 234 (2013) 223–231. https://doi.org/10.1016/j.cej.2013.08.075.
- [17] S.A. Hosseini, A. Niaei, D. Salari, S.R. Nabavi, Nanocrystalline AMn_2O_4 (A = Co, Ni, Cu) spinels for remediation of volatile organic compounds synthesis, characterization and catalytic performance, Ceram. Int. 38 (2012) 1655–1661. https://doi.org/10.1016/j.ceramint.2011.09.057.