Electronic Supporting Information

Coordination Tunes Activity and Selectivity of Nitrogen Reduction Reaction on

Single-Atom Iron Catalysts: A Computational Study

Dongxu Jiao,^a Yuejie Liu,^{b,*} Qinghai Cai,^{a,b} Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic

and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, China

^b Modern Experiment Center, Harbin Normal University, Harbin, 150025, China

*To whom correspondence should be addressed. Email: zjx1103@hotmail.com (YL); xjz hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ)

Computational Details on Free Energy Changes

The widely-accepted computational hydrogen electrode (CHE) model^{1,2} was used to compute the change in the Gibbs free energy change (ΔG) for all NRR steps, in which one-half of the chemical potential of hydrogen molecule is equal to the chemical potential of proton-electron pair. In this CHE model, the ΔG value of each elementary step in NRR can be obtained by: $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_{pH} +$ $\Delta G_{\rm U}$, where ΔE that represents the reaction energy difference of reactant and product, which can be directly computed from DFT computations. ΔE_{ZPE} and ΔS are the change in the zero-point energies and entropy at room temperature (T =298.15K), which can be computed from the vibrational frequencies. Notably, the entropies of the free molecules, including N₂, NH₃, and H₂, were taken from the NIST database. ΔG_{pH} is the free energy correction of pH, which can be determined as: $\Delta G_{\rm pH} = k_{\rm B} T \times pH \times \ln 10$, and in this work the pH value was set to be zero. $\Delta G_{\rm U}$ = -eU, where e is the transferred charge and U represents the applied potential at the electrode. The limiting potential $(U_{\rm L})$ was employed to assess the NRR catalytic activity, which can be computed by: $U_{\rm L} = -\max(\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4, \dots, \Delta G_i)/e$, where ΔG_i represents the free energy change of each elementary step in the whole NRR process. According to this definition, a less negative U_L on a given catalyst denotes a less energy input, thus suggesting its higher NRR catalytic activity.

Scheme S1. The involved reaction pathways for NRR on B-doped Fe-N₄/G

Fig. S1. The scaling relationship between adsorption energy (E_{ads}) of N₂ molecule and spin moment of the central Fe atom (μ_{Fe}).

Fig. S2. The optimized adsorption configurations of N_2 molecule on Fe-B_xN_{4-x}/G in end-on and side-on patterns and the corresponding adsorption energies.

Fig. S3. The computed partial density of states of N_2 adsorption on pristine Fe- N_4/G .

Fig. S4. The obtained free energy profiles of NRR on various Fe-B_xN_{4-x}/G systems along distal pathways, and the computed ΔG values for N₂^{*} \rightarrow N₂H^{*}.

Fig. S5. The involed NRR intermediates on Fe- B_1N_3/G along distal and alternative pathways.

Fig. S6. The computed free energy profiles for NRR on Fe- B_2N_2/G along enzymatic pathway, and the involved reaction intermediates.

Fig. S7. The computed free energy profiles of NRR on (a) Fe- B_2N_2 -1 and (b) Fe- B_2N_2 -2, and the corresponding NRR intermediates.

Fig. S8. Gibbs free energy (ΔG) diagram for NRR on Fe-B₂N₂/G with solvent effect.

Fig. S9. The computed minimum energy path for N_2 reduction to NH_3 , and the corresponding structures of transition states (TSs).

Fig. S10. The computed (a) free energy profile and (b) minimum energy path for HER on Fe-B₂N₂/G.

Fig. S11. Gibbs free energy (ΔG) diagram for NRR on Fe-B₂N₂/G with Hpreadsorption on B site.

Fig. S12. The optimized adsorption configuration for H_2O on Fe-B₂N₂/G.

Fig. S13. The scaling relationships of limiting potential of NRR (U_L) vs d-band center (ϵ_d) of the central Fe atoms.

Fig. S14. The spin density of Fe-B₂N₂/G. The isosurface value was set as 0.01 e/Å².

Fig. S15. The computed band structures of (a) Fe- N_4/G and (b) Fe- B_2N_2/G . The Fermi level was set to zero in red dotted line.

References

1. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, 108, 17886-17892.

2. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy & Environ. Sci.*, 2010, 3, 1311-1315.

3.