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S1. Calculation of the release rate for 2-H2TPyP molecules

To determine the release rate of 2-H2TPyP molecules during the ice-melting process, several 

assumptions were made, i.e., a constant release speed at the same time interval (5 min), cube-

shaped ice and a fast reaction speed between acidic 2-H2TPyP solution (Solution A) and basic 

surfactant solution (Solution B).

The number of 2-H2TPyP molecules released per time was calculated based on the 

concentration of Solution A (0.01 M), and the melted volume (V) and melting time were the 

key variables. For example, Solution A was frozen and melted in Solution B. The number of 

2-H2TPyP molecules per volume () was 6.02×1018 based on the following equation:

𝜇 = 𝑁𝐴𝑐 (1)

where c is the concentration of Solution A (0.01 M), NA is Avogadro's constant (6.02×1023), 

indicating that there are approximately 6.02×1018 2-H2TPyP molecules per milliliter.

The melted volume (mL) of frozen Solution A as a function of time (min) was also measured 

(Fig. 1). The curve of the melted volume versus time was fitted as a polynomial function, 

which was described by the following equation:

𝑦 = 1.858 × 10 ‒ 4𝑥2 + 0.013𝑥 ‒ 0.135 (2)
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Equation (2) gave the relation between the released rate and time. Based on (2) we can 

estimate that the average number of released molecules (v) was 2.2×1015 per second, as 

described by the following equation:
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In comparison, in a conventional method with Solution A and Solution B, the moment (t) that 

Solution A was dropped into Solution B is significantly short (t << 1 millisecond); in this case 

we assumed 1×10-2 second. As a result, the number of 2-H2TPyP molecules released per 

second was 6.02×1020 when using a conventional method.

S2. Structural analysis of 2-H2TPyP and 2-ZnTPyP nanostructures

Upon ice-melting, the acidic 2-H2TPyP or 2-ZnTPyP molecules (protonated) were released 

into the base solution, which triggered the acid-base neutralization reaction. Then, 

deprotonation of acidic porphyrin took place and subsequently slow self-assembly, to finally 

yield the precipitates. It takes about 50 min for the frozen 2-H2TPyP or 2-ZnTPyP to 

completely melt in the base solution at 0 °C. We then collected the precipitates by 

centrifugation for characterization of structure and properties at time intervals of 5, 15 and 25 

min, respectively.



Fig. S1. SEM and TEM images of SDS-assisted 2-H2TPyP under different methods: (A, B) 
Ice-melting 5 min, (C, D) Ice-melting 15 min, (E, F) Ice-melting 25 min, (G, H) Conventional 
5 min, (I, J) Conventional 15 min, (K, L) Conventional 25 min.

Fig. S2. XRD spectra of SDS-assisted 2-H2TPyP samples under different methods.



Fig. S3. SEM and TEM images of SDS-assisted 2-ZnTPyP under different methods: (A, B) 
Ice-melting 5 min, (C, D) Ice-melting 15 min, (E, F) Ice-melting 25 min, (G, H) Conventional 
5 min, (I, J) Conventional 15 min, (K, L) Conventional 25 min.

Fig. S4. XRD spectra of SDS-assisted 2-ZnTPyP samples under different methods.



Fig. S5. TEM images and SAED patterns of CTAB-assisted 2-ZnTPyP under different 
methods: ice-melting 15 min (A, B) and conventional 15 min (C, D). 

Fig. S6. (A) Nitrogen adsorption-desorption isotherms and (B) pore size distributions of the 
SDS-assisted 2-H2TPyP and 2-ZnTPyP sampled under different methods (15 min).

S3. Computational analysis of 2-ZnTPyP self-assembly

Fig. S7. The atomic structure models of 2-ZnTPyP dimer with 10 H2O molecules (A, B), and 
with 22 H2O molecules (D, E); (C) and (F) are the corresponding electron density difference 
distribution during AIMD simulations. 



To study the interaction nature of the 2-ZnTPyP dimer in aqueous solution, the difference 

electron density (r) was also analyzed. Here  (r) was obtained by subtracting the electron 

densities of non-interacting 2-ZnTPyP monomer component systems, from the density  (r) 

of the formed 2-ZnTPyP dimer, while retaining the atomic positions of the component 

systems at the same location as in the 2-ZnTPyP dimer. As shown in Fig. S7C and S7F, red 

and black lines represent charge depletion and accumulation, respectively. Large charge 

change between Zn2 and pyridine C at the neighboring porphyrin could be gained for the 2-

ZnTPyP dimer in the environment of 10 or 22 H2O molecules.

Fig. S8. Pair-correlation functions of Zn and C with difference studied conditions during 
AIMD simulations.

The pair-correlation functions (PCFs) g(r) defined the possibility of finding a particle at a 

distance r from a given atom,

𝑔(𝑟) =
1

< 𝜌 >
𝑑𝑛(𝑟,𝑟 + 𝑑𝑟)
𝑑𝑣(𝑟,𝑟 + 𝑑𝑟)

 (4)

Herein, dn(r, r + dr) represented the number of particles in the interlayer volume of the thin 

spherical shell dv(r, r + dr), of which r and dr were the radius and the microscale thickness 

respectively. < > stood for the average particle number density of the system. In Fig. S8, the 

peak of g(r)Zn-C exited at about 3.08 Å, in good agreement with the distance between Zn and 



benzene ring C in the porphyrin molecule. The peak of Zn-C PCF g(r)Zn-C around 2.14 Å 

occurred in 2-ZnTPyP dimer, but disappeared in the 2-ZnTPyP monomer, indicating that this 

peak corresponds to the distance between Zn and pyridine C at the neighboring porphyrin 

molecule.

S4. XRD characterization of representative Alq3 nanostructures

Fig. S9. XRD spectra of the representative Alq3 samples. The shift of the XRD peaks to large 
θ indicated the narrowed interplanar spacing.

S5. Photoelectronic properties and photocatalytic performance of 2-ZnTPyP nanostructures

The tests on the photoelectronic properties and photocatalytic performance were mainly 

performed on the SDS-assisted 2-ZnTPyP samples under different methods.



Fig. S10. Raman spectra of 2-ZnTPyP samples under different methods.

Table S1. The carrier lifetime of 2-ZnTPyP under different methods in time-resolved 
fluorescence. 

Sample τ1 (ns) B1 τ2 (ns) B2 <τ>a (ns)

2-ZnTPyP
(conventional 15 min)

0.67 566.66 3.13 101.05 1.79

2-ZnTPyP
(ice-melting 15 min)

0.62 549.37 1.82 61 0.91

a <> = (B1 )/(B1 1 + B2 2 )

Fig. S11. Photocurrent densities of 2-ZnTPyP samples under different methods.



Fig. S12. Catalytic efficiencies of 2-ZnTPyP samples under different methods.

Fig. S13. XRD spectra of of the ice-melting 2-ZnTPyP samples after eight repeated runs of 
MB degradation.


