Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information:

Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites

Dabin Lin,^a Lin Ma, ^{*a} Wenjun Ni,^b Cheng Wang,^a Fangteng Zhang,^a Huafeng Dong,^a Gagik G. Gurzadyan^b and Zhaogang Nie^{*a}

^aSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.

^bState Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian 116024, China.

E-mail: malin@gdut.edu.cn; zgnie@gdut.edu.cn

Figure S1. Steady-state (a) absorption and (b) photoluminescence (PL) spectra of $(PEA)_2(MA)_2Pb_3I_{10}$ 2D layered perovskite film. The PL is excited from the glass substrate side under excitation at 460 nm.

Figure S2. Transient absorption spectra of $(PEA)_2(MA)_2Pb_3I_{10}$ excited from the front face (air side) under 770 nm excitation (The scattering signal due to excitation light is removed for clarity).

λ_{exc}	λ_{probe}	τ_0 , ps	A_0	τ_1 , ps	A_1	τ_2 , ps	A_2	τ ₃ , ps	A ₃
400 nm	525 nm (n=1)	$\begin{array}{c} 0.22 \\ \pm 0.04 \end{array}$	54%	2.0 ±1	23%	11 ±4	23%		
	573 nm (n=2)	$\begin{array}{c} 0.40 \\ \pm 0.01 \end{array}$	25%	9.0 ±0.3	35%	100 ±4	29%	2600 ±200	11%
	617 nm (n=3)	$\begin{array}{c} 0.20 \\ \pm 0.002 \end{array}$	-100%	13 ±0.6	39%	107 ±9	39%	850 ±90	22%
	760 nm (n>=10)	$\begin{array}{c} 0.53 \\ \pm 0.08 \end{array}$	-100%	9.0 ±0.8	-23%	280 ±30	38%	$\begin{array}{c} 2100 \\ \pm 200 \end{array}$	62%
530 nm	573 nm (n=2)	$\begin{array}{c} 0.32 \\ \pm 0.08 \end{array}$	15%	9.7 ±0.8	50%	130 ±20	35%		
	617 nm (n=3)	0.56 ±0.03	26%	20 ±1	36%	280 ±20	38%		
	760 nm (n>=10)	$\begin{array}{c} 0.46 \\ \pm 0.01 \end{array}$	-100%	17 ±3	-20%			$\begin{array}{c} 1000 \\ \pm 200 \end{array}$	38%
570 nm	573 nm (n=2)	$\begin{array}{c} 0.38 \\ \pm 0.04 \end{array}$	-12%	4.8 ±0.3	32%	46 ±2	50%	590 ±50	18%
	617 nm (n=3)	$\begin{array}{c} 0.26 \\ \pm 0.08 \end{array}$	34%	$\begin{array}{c} 4.5 \\ \pm 0.3 \end{array}$	17%	52 ±2	33%	650 ±40	16%
	760 nm (n>=10)	$\begin{array}{c} 0.41 \\ \pm 0.01 \end{array}$	-89%	5.1 ± 0.8	-11%	260 ±10	55%	4200 ±200	45%
610 nm	573 nm (n=2)	0.06 ±0.01	-100%			230 ±20	100%		
	617 nm (n=3)	$\begin{array}{c} 0.30 \\ \pm 0.02 \end{array}$	30%	5.9 ±0.3	31%	97 土6	31%	4000 ±800	8%
	760 nm (n>=10)			2.0 ±0.8	-80%			15000 ±1000	100%

Table S1. Fitting parameters of TA kinetics under various excitation wavelengths.

Figure S3. Instrument response function (IRF) of fluorescence up-conversion setup determined from the Gaussian fit of Raman scattering signal in ethanol solvent.

Table S2. Fitting parameters of time-resolve PL kinetics at different emission wavelengthsmeasured via femtosecond fluorescence up-conversion under 400 nm excitation.

$\lambda_{ m PL}$	τ_0 , ps	A_0	τ_1 , ps	A ₁	τ_2 , ps	A ₂	τ_3 , ps	A ₃	τ_4 , ps	A_4
522 nm (n=1)	$0.39 \\ \pm \\ 0.05$	-100%	2.5 ± 0.4	73%	18 ±3	27%				
573 nm (n=2)	0.22 ±0.04	-100%	3.0 ±0.4	57%	31 ±8	31%	250 ±100	12%		
620 nm (n=3)	0.23 ±0.06	-100%	$\begin{array}{c} 3.5 \\ \pm 0.7 \end{array}$	53%	47 ±17	30%	370 ±160	31%		
720 nm (n>=10)	IRF	-16%	2.4 ± 0.8	-35%			250 ±60	-49%	25000 fixed	100%

Figure S4. Time-resolved PL kinetics of $(PEA)_2(MA)_2Pb_3I_{10}$ at ns scale at 750 nm measured by time correlated singlet photon counting (TCSPC) technique under excitation at 400 nm (red) and 700 nm (blue).