Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Single-Atom Ru Anchored in Nitrogen-Doped MXene (Ti₃C₂Tx)

as Efficient Catalyst for the Hydrogen Evolution Reaction at All

pH Values

Haigang Liu^{a, b, +}, Zhe Hu^{c, +}, Qinglei Liu^b, Peng Sun^b, Yongfei Wang^{a,b, *}, Shulei Chou^{c, *}, Zhizhi Hu^b, Zhiqiang Zhang^{b,*} ^aSchool of Materials and Metallurgy University of Science and Technology Liaoning Anshan, Liaoning 114051, P. R. China ^bKey Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road, Anshan 114051, P. R. China ^cInstitute for Superconducting and Electronic Materials University of Wollongong Squires Way, North Wollongong, NSW 2519, Australia ⁺These author contributed equally to this work.

E-mail: wyf8307@ustl.edu.cn, shulei@uow.edu.au, zzq@ustl.edu.cn

Table of contents Fig. S1-S11 Tables S1-S2

References

Fig. S1 SEM image of Ti_3AlC_2 , scale bara (a)1 μ m and (b) 200 nm.

Fig. S2 XRD patterns of the MAX phase Ti_3AlC_2 and Ti_3C_2Tx MXene.

Fig. S3 (a) TEM image of the Ti_3C_2Tx (scale bar, 200 nm). (b) High-resolution TEM image of the Ti_3C_2Tx (scale bar, 10 nm)

Fig. S4 (a) Survey scan and (b) high resolution C1s XPS spectra of Ti_3C_2Tx .

Fig. S5 Survey scan XPS spectra of the Ru_{SA} -N-Ti₃C₂Tx catalyst.

Fig. S6 High resolution N1s XPS spectra of N- Ti_3C_2Tx .

Fig. S7 TEM image of the Ru_{NC} - Ti_3C_2Tx , (a) (scale bar, 50 nm) and (b) (scale bar, 20 nm, inset: HRTEM image)

Fig. S8 The wavelet transform for the k^2 -weighted Ru-edge EXAFS of Ru_{NC}-Ti₃C₂Tx.

Fig. S9 EXAFS fitting results for Ru_{NC} -Ti₃C₂Tx.

Fig. S10 (a) HER polarization curves for Ru_{SA} -N-Ti₃C₂Tx and Pt/C in 1 M PBS. (b) Durability of Ru_{SA} -N-Ti₃C₂Tx before and after 5000 CV cycles in 1 M PBS. (inset: chronoamperometry curve of Ru_{SA} -N-Ti₃C₂Tx and Pt/C).

Fig. S11 CV curves of (a) Ti_3C_2Tx and (b) Ru_{SA} -N- Ti_3C_2Tx at different scan rates in 0.5 M H₂SO₄. (C) The double-layer capacitance value (C_{dl}) of Ti_3C_2Tx and Ru_{SA} -N- Ti_3C_2Tx .

Fig. S12 (a) Top and (b) side views of the Ti_3C_2Tx layer atomic model. Blue: Ti; red: O; brown: C, and cyan : F.

Tables S1-S2

Sample	shell	N ^a	R(Å)	$\sigma^2(10^{-3}\text{\AA}^2)$	R factor	
Ru_{SA} -N- $Ti_3C_2T_X$	Ru-N/O	3.4	2.09	5.3	0.0068	
Ru _{NC} -Ti ₃ C ₂ T _X	Ru-C	3.8	2.03	8.7	0.0076	
	Ru-Ru	4.2	2.60	9.2		
Ru foil	Ru-Ru	12*	2.68	4.0	0.0020	
RuO ₂	Ru-O	4*	1.90	4.5	0.0025	
	Ru-O	2*	2.02	3.8	0.0023	

Table S1. EXAFS curve Fitting Parameters of the Ru K-edge (S0²=0.95)

S0² is the amplitude reduction factor; N^a is the coordination number; R is interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); R factor is used to value the goodness of the fitting. Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as N^a±20%; R±1%; $\sigma^2\pm 20\%$.

* This value was fixed during EXAFS fitting, based on the known structure of standard crystal.

Table S2. Comparison of HER performance in alkaline/acid/neutral media for Ru_{SA} -N-Ti₃C₂T_X with other HER electrocatalysts.

Catalyst	Catalyst Loading (mg/cm ²)	Electrolytes	Overpotential @10 mA/cm ² (mV)	Tafel slop (mV dec ⁻¹)	Ref
Ru-N-Ti ₃ C ₂ Tx	1.0	1 M KOH	27	29	This
		0.5 M H ₂ SO ₄	23	35	
		1 M PBS	81	_	WORK
Mxene@Pt/SWCT	-	0.5 M H ₂ SO ₄	62	78	[1]

S					
Mo ₂ TiC ₂ Tx-Pt _{SA}	1.0	0.5 M H ₂ SO ₄	30	30	[2]
		1 M KOH	99	-	-
Ru_{SA} -N-S-Ti ₃ C ₂ Tx	1.0	0.5 M H ₂ SO ₄	76	90	[3]
		1 M PBS	275	-	
	0.285	1 M KOH	7	30	[4]
Ru@Co-SAS/N-C		0.5 M H ₂ SO ₄	57	55	
		1 M PBS	55	82	
Co ₁ /PCN	0.5	1 M KOH	138	89	[5]
	0.0	0.5 M H ₂ SO ₄	151	52	
RuSA@PN	1.0	0.5 M H ₂ SO ₄	42	38	[6]
	1.0	1 M KOH	52	69	[7]
RuP ₂ @NPC		0.5 M H ₂ SO ₄	38	38	
		1 M PBS	57	87	
Ru@CN-0.16	0.048	1 M KOH	32	53	[8]
		0.1 M H ₂ SO ₄	126	-	
		1 M PBS	100	-	
	0.16	1 М КОН	17	27	[9]
Ru@MWCNT	0.7	0.5 M H ₂ SO ₄	13	27	
	-	1 M PBS	-	-	
$Ru/C_NL/C$	0.204	1 М КОН	79	-	[10]
Ku/C ₃ IN ₄ /C		0.5 M H ₂ SO ₄	~75	-	
CoP/CC	0.92	1 M KOH	209	129	[11]
		0.5 M H ₂ SO ₄	67	51	
		1 M PBS	65	93	
Ru–MoO ₂	0.285	1 M KOH	29	31	- [12]
	0.57	0.5 M H ₂ SO ₄	55	44	
		0.5 M KOH	95	70	
1D-RuO ₂ -CN _x	0.17				[13]

		0.5 M H ₂ SO ₄	93	40	
		0.1 M PBS	356	135	
CoP@BCN	0.4	1 M KOH	215	52	
		0.5 M H ₂ SO ₄	87	46	[14]
		1 M PBS	122	59	
NiCo ₂ P _x /CF	5.9	1 M KOH	58	34.3	[15]
		0.5 M H ₂ SO ₄	104	59.6	
		1 M PBS	63	63.3	
Mn-CoP/Ti	5.61	1 M KOH	76	52	[16]
		0.5 M H ₂ SO ₄	49	55	
		1 M PBS	86	82	
CoNC/GD	-	1 M KOH	284	115	
		0.5 M H ₂ SO ₄	340	138	[17]
		1 M PBS	368	207	
Zn _{0.3} Co _{2.7} S ₄	0.285	1 M KOH	85	-	[18]
		0.5 M H ₂ SO ₄	80	47.5	
		1 M PBS	90	-	

References.

- 1 C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, *Adv. Funct. Mater.*, 2020, 2000693.
- 2 J. Zhang, Y. Zhao, X. Guo, C. Chen, C. Dong, R. Liu, C. Han, Y. Li, Y. Gogotsi, G. Wang, *Nat. Catal.*, 2018, 1, 985.
- 3 V. Ramalingam, P. Varadhan, H. Fu, H. Kim, D. Zhang, S. Chen, L. Song, D. Ma,

Y. Wang, H. N. Alshareef, J. H. He. Adv. Mater., 2019, 31, 1903841.

- 4 S. Yuan, Z. Pu, H. Zhou, J. Yu, I. S. Amiinu, J. Zhu, Q. Liang, J. Yang, D. He, Z. Hu, G. V. Tendeloo, S. Mu, *Nano Energy*, 2019, **59**, 472.
- 5 L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, *Nat. Catal.*, 2018, 2, 134.
- 6 J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Angew. Chem. Int. Ed., 2018, 57, 9495.
- 7 Z. Pu, I. S. Amiinu, Z. Kou, W. Li, S. Mu, Angew. Chem. Int. Ed., 2017, 56, 11559.
- 8 J. Wang, Z. Wei, S. Mao, H. Li, Y. Wang, Energ. Environ. Sci., 2018, 11, 800.
- 9 Do Hyung Kweon1 Mahmut Sait Okyay, Seok-Jin Kim, Jong-Pil Jeon, Hyuk-Jun Noh, Noejung Park, Javeed Mahmood& Jong-Beom Baek, *Nat. Com.*, 2020, 11, 1278.
- 10 Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc., 2016, 138, 16174.
- 11 J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc., 2014, 136, 7587.
- 12 P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, Q. Chen, J. Mater. Chem. A, 2017, 5, 5475.
- 13 T. Bhowmik, M. K. Kundu, S. Barman, ACS Appl. Mater. Inter., 2016, 8, 28678.
- 14 H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang, R. Zou, Adv. Energy Mater., 2017, 7, 1601671.
- 15 R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, *Adv. Mater.*, 2017, 29.
- 16 T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun, L. Chen, ACS Catal. 2016, 7, 98.
- 17 Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, Y. Li, ACS Appl. Mater. Inter., 2016, 8, 31083.
- 18 Z. F. Huang, J. Song, K. Li, M. Tahir, Y. T. Wang, L. Pan, L. Wang, X. Zhang, J. J. Zou, J. Am. Chem. Soc., 2016, 138, 1359.