Ruddlesden-Popper Oxide SrEu₂Fe₂O₇ as Promising Symmetrical Electrodes for Pure CO₂ Electrolysis

Daoming Huan^{+a}, Lu Zhang^{+a}, Shaowei Zhang^a, Nai Shi^a, Xinyu Li^a, Kang Zhu^a,

Changrong Xia*a, Ranran Peng*a, Yalin Lua

^a CAS Key Laboratory of Materials for Energy Conversion, Department of Materials
Science and Engineering, University of Science and Technology of China, Hefei,
230026 Anhui, China.

Corresponding Author

*Changrong Xia: xiacr@ustc.edu.cn

*Ranran Peng: pengrr@ustc.edu.cn

Thermal structural stability

Figure S1. In-situ XRD patterns for SEF which are measured from 20 to 900 °C.

Figure S2. Chemical compatibility of LSGM-SEF (weight ratio 1:1) mixed powders calcined at 1000 °C for 2 h.

SEF rectangular bars

Figure S3. (a) surface and (b) cross section microstructures of SEF rectangular bars.

Oxygen nonstoichiometry

Figure S4. (a) TG analysis testing from 20 to 1000 °C and (b) compasison of oxygen nonstoichiometry (δ) at 20, 650, 700, 750 and 800 °C, respectively.

Section microstructures

Figure S5. Section microstructures of SEF electrode after test in (a) dry air, and (b) CO_2 -CO (2:1) atmospheres.

Figure S6. High resolution SEM microstructure of cathode electorde after 260 hours'

long-term test.

SFM|LSGM|SFM symmetrical SOEC

Figure S7. I-V curves of the symmetrical SOEC with configuration of SFM|LSGM|SFM applied to electrolyze pure CO₂.

Sample	a/b (Å)	c (Å)	α=β=γ	R _p (%)	R _{wp} (%)	χ^2
SEF	5.4965	19.8637	90°	2.75	3.48	2.20

 Table S1. Room-temperature structural parameters of SEF powders.

	$\mathbf{P}_{1}(\mathbf{O}_{1},\mathbf{m}^{2})$	Current density		Df
Electrodes	$\mathbf{K}_{\mathbf{p}}$ (22cm ²)	(Acm ⁻²)	v (v)	Kei.
$La_{0.3}Sr_{0.7}Fe_{0.7}Ti_{0.3}O_{3-\delta}$	0.35 @1.2V	0.28	1.5	1
$La_{0.3}Sr_{0.7}Fe_{0.7}Cr_{0.3}O_{3\text{-}\delta}$	1.33@OCV	0.32 (9CO ₂ :CO)	1.5	2
$La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3\text{-}\delta}\text{-}SDC$	2.8@1.5V	0.09	1.5	3
$La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}\ O_{3\text{-}\delta\text{-}}GDC$	0.91@OCV	0.55	1.5	4
$La_{0.6}Sr_{0.4}Fe_{0.9}Mn_{0.1}O_{3\text{-}\delta\text{-}}GDC$	0.85@OCV	0.35	1.5	5
$La_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Nb_{0.1}O_{3}\deltaGDC$	0.68@OCV	0.44	1.5	6
$La_{0.6}Ca_{0.4}Fe_{0.8}Ni_{0.2}O_3$ - δ -GDC	0.70@OCV	0.75	1.5	7
$La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ -SDC-Fe	0.6@2.0V	0.25	1.5	8
MnCo ₂ O ₄ -GDC	1.43@OCV	0.75	1.5	9
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	0.85@OCV	1.04	1.5	This work
SrEu ₂ Fe ₂ O ₇	0.27@OCV, 800	1.27	1.5	This work

Table S2. Summary of some typical symmetrical SOECs for pure CO_2 electrolysis measured at 800 °C.

Reference

- Z. Cao, B. Wei, J. Miao, Z. Wang, Z. Lü, W. Li, Y. Zhang, X. Huang, X. Zhu, Q. Feng and Y. Sui, *Electrochem. Commun.*, 2016, 69, 80-83.
- P. Addo, B. Molero-Sanchez, M. Chen, S. Paulson and V. Birss, *Fuel Cells*, 2015, 15, 689-696.
- 3. S. Xu, S. Li, W. Yao, D. Dong and K. Xie, J. Power Sources, 2013, 230, 115-121.
- Y. Tian, H. Zheng, L. Zhang, B. Chi, J. Pu and J. Li, *J. Electrochem. Soc.*, 2018, 165, F17-F23.
- X. Peng, Y. Tian, Y. Liu, W. Wang, L. Jia, J. Pu, B .Chi and J. Li, J. CO₂ Util., 2020, 36, 18-24.
- Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin and S. Peng, J. CO₂ Util., 2019, 33, 445-451.
- Y. Tian, L. Zhang, Y. Liu, L. Jia, J. Yang, B. Chi, J. Pu and J. Li, *J. Mater. Chem. A*, 2019, 7, 6395-6400.
- C. Ruan, K. Xie, L. Yang, B. Ding and Y. Wu, *Int. J. Hydrogen Energ.*, 2014, 39,10338-10348.
- L. Zhang, Y. Tian, Y. Liu, L. Jia, J. Yang, B. Chi, J. Pu and J. Li, ChemElectroChem, 2019, 6, 1359-1364.