Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Natural Polymer-Based Bioabsorbable Conducting Wires for Implantable

Bioelectronic Devices

Qianqian Niu, Xiangyu Huang, Shasha Lv, Xiang Yao, Suna Fan*, Yaopeng Zhang*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China Corresponding author: Yaopeng Zhang, Suna Fan

E-mail: zyp@dhu.edu.cn(Y.Z.), fsn@dhu.edu.cn (S.F.)

Fig. S1 (a) AFM image and (b) height profile of SNRs derived from TEMPO/NaBr/NaClO solvent system containing 0.016 mol NaClO, 0.02 g TEMPO, and 0.1 g NaBr per gram of DS. The blue line in (a) was used to measure the (b) height of three SNRs.

Fig. S2 Comparison of UV-*vis* transmittance of S8K2 with a thickness of 45 μm prepared by casting and vacuum-filtration methods.

Fig. S3 Surface roughness of SKCFs with different mass ratios.

Fig. S4 Strength and elongation at break of SKCFs in (a) dry and (b) wet conditions. (c) Effect of SKCF mass ratios on Young's modulus and toughness of SKCFs in dry conditions.

Fig. S5 AFM image of the surface morphology of SKCF-Au wire.

Fig. S6 Representative scanning electron micrograph of L929 cells seeded on SKCF-Au film for 3

d.

Fig. S7 Output current of TENG using two kinds of conducting wire at a frequency of 4 Hz.

	Mate	erials			Biodegrad-			
Friction layer type	Friction layer	Conducting layer	Encapsula- tion layer	PD (mW/m ²)	able TENG	wire	dable	Ref.
NP/SP	Chitosan/Ka pton	Al		0.0175	No	Copper electrode	No	1
	CNF/FEP	ITO	PET	5600	No	Copper tapes	No	2
	PVA/SA	Al/Li	Soluble tape	3.8	Yes	Conductive tape	No	3
	RSSP/PET	ITO		1030	No	Metal wire	No	4
	RSSP/PET& PVDF	ITO/Cu		4016	No	Metal wire	No	5
	Leaf/PMMA	Metal		45	No	Metal electrode	No	6
	RSFF/PET	ITO		68	No	Metal wire	No	7
	ESM/PI	Al		4.3	No	Metal wire	No	8
	RSFF/PET	ITO		1936	No	Metal wire	No	9
	ESM/PVA& MXene	Al		1087.6	No	Metal wire	No	10
	ESM/PCL& GO	Au	PCL	72	Yes	Metal wire	No	11
SF/SP	ESM/PVDF	Conductive fabric		3100	No	Metal wire	No	12
	RSFF/PTFE	Al	Acrylic substrate	22050	No	Metal wire	No	13
	Silk aerogel/PTF E	ITO	PET	370	No	Aluminum strand	No	14
	RSFF/PET	ITO	Plastic casing	371.8	No	Metal wire	No	15
	CCP/NCM	Copper foil	Print paper	16100	No	Metal wire	No	16
	Calcium Alginate	Al	PLA	10.6	No	Metal wire	No	17
NP/NP	Nitro- CNF/Methyl -CNF	ΙΤΟ	PET	640	No	Metal wire	No	18
	BNC	Copper foil	PPF&PO M	4.8	No	Metal wire	No	19
	Starch	Water film		2.58	Yes	Metallic wire	No	20
	Leaf/Liquid	Cr/Au		0.0024	Yes	Metal wire	No	21
SF/NP	RSFF	Mg	RSFF	38.5	Yes	Metal lead wire	No	22
	RSFF/Rice	Mg	RSFF	21.6	Yes	Metal lead	No	23

Table S1 Comparison of the PD of the integrated energy generated device with that of other previously reported bio-based TENGs.

	paper			wire				
	SNRF/ESM	Mg/Al	RSFF	102	No	Cu wire	No	24
	SNRF/RSFF	Mg	RSFF	86.7	Yes	Cu wire	No	24
	SNRF/RSFF Mg RSFI	DODD	214.4		SKCF-Au		This	
		Mg	RSFF	314.4	Yes	wire	Yes	work

Note: CNF (cellulose nanofibril), FEP (fluorinated ethylene propylene), PET (poly(ethyleneterephthalate)), PVA (polyvinyl alcohol), SA (alginate sodium), RSSP (recombinant spider silk proteins), PVDF (Poly(vinylidene fluoride)), PMMA (poly(methyl methacrylate)), ESM (electrospinning mat), PI (polyimide), RSFF (regenerated silk fibroin film), PCL (polycaprolactone), PTFE (polytetrafluoroethylene), ITO (indium tin oxide), CCP (crepe cellulose paper), NCM (nitrocellulose membrane), BNC (bacterial nanocellulose), PPF (polypropylene), POM (polyoxymethylene), PLA (polylactic acid), SNRF (silk nanoribbon film).

Туре	Conductive material	Conductive material content	Other materials	Conductive property	Biodeg- radability/working time	Ref.
Conventional metallic wire	Cu	100%	No	Resistivity 1.75 $\times 10^{-8} \Omega \cdot m$	No	
	Al	100%	No	Resistivity 2.83 $\times 10^{-8} \Omega \cdot m$	No	
	Cu-CNT	100%	No	Resistivity 1.6 $\times 10^{-7} \Omega \cdot m$	No	25
	CNT-Au-Cu	100%	No	Conductivity 4.65×10 ⁵ S/cm	No	26
	Aligned CNT	T=0.15-1.59 μm	self-healing polymer	Resistance 140 Ω/cm	No	27
Fiber-shaped wire	CNT		self-healing polymer	Resistance 5.7×10 ³ Ω/cm	No	27
	Ag nanowire		self-healing polymer	Resistance 12 Ω/cm	No	27
	Ag-Au naowire		SBS elastomer	Conductivity 4.2×10 ⁴ S/cm	No	28
	Silver nanowire	30 µm	PET fibers	Resistivity 1.62×10 ⁻⁸ Ω·m	No	29
Biodegradable	Mg, Mg-Ca, Mg-Zn, Mg-Si, Mg-Sn, Mg-Zr, Mg-Al,	100%	No		Yes	30-32
	Fe, Fe-Mn,	100%	No		Yes	32
	Zn, Ca, Sr	100%	No		Yes	32
	Mg	T=7.5 μm	poly(DTE carbonate), and PCL	Resistance 1 Ω/cm	Yes/7 d	33
Biodegradable wire	PEDOT:PSS	D=48 μm	RSF	Conductivity 138 S/cm	Yes/7 d	34
	Cr/Au	T=150 nm	SKCF	Resistance 8 Ω/cm	Yes/10 d	This work

Table S2 Comparison of the conducting wires.

Note: CNT (carbon nanotube), PET (poly(ethyleneterephthalate)), PCL (polycaprolactone), RSF (regenerated silk fibroin), SBS (poly(styrene-butadiene-styrene)), PET (poly(ethyleneterephthalate)), PEDOT:PSS (poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate)), poly(DTE carbonate) (poly(desamino tyrosyl-tyrosine ethyl ester carbonate)), RSF (regenerated silk fibroin). "T"=thickness, "D"=diameter.

References

1	R. Wang, S. Gao, Z. Yang, Y. Li, W. Chen, B. Wu and W. Wu, <i>Adv. Mater.</i> , 2018, 30 , 1706267
2	C Yao A Hernandez Y Yu Z Cai and X Wang Nano Energy 2016 30 103-108
3	O. Liang, O. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma and Y. Zhang, Adv. Mater., 2017.
-	29 , 1604961.
4	Y. Zhang, Z. Zhou, L. Sun, Z. Liu, X. Xia and T. H. Tao, <i>Adv. Mater.</i> , 2018, 30 , 1805722.
5	T. Huang, Y. Zhang, P. He, G. Wang, X. Xia, G. Ding and T. H. Tao, <i>Adv. Mater.</i> , 2020, 32 ,
	1907336.
6	Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang, Z. L. Wang and X. Cao, Adv. Energy Mater., 2018, 8,
	1703133.
7	C. Liu, J. Li, L. Che, S. Chen, Z. Wang and X. Zhou, Nano Energy, 2017, 41, 359-366.
8	HJ. Kim, JH. Kim, KW. Jun, JH. Kim, WC. Seung, O. H. Kwon, JY. Park, SW.
	Kim and IK. Oh, Adv. Energy Mater., 2016, 6, 1502329.
9	XS. Zhang, J. Brugger and B. Kim, Nano Energy, 2016, 20, 37-47.
10	C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying and J. Ping, Nano Energy,
	2019, 59 , 268-276.
11	S. Parandeh, M. Kharaziha, F. Karimzadeh and F. Hosseinabadi, Nanotechnology, 2020, 31,
	385402.
12	Y. Guo, XS. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang and J. Brugger, Nano Energy,
	2018, 48 , 152-160.
13	B. Dudem, R. D. I. G. Dharmasena, S. A. Graham, J. W. Leem, H. Patnam, A. R. Mule, S. R.
	P. Silva and J. S. Yu, Nano Energy, 2020, 74, 104882.
14	HY. Mi, H. Li, X. Jing, P. He, PY. Feng, X. Tao, Y. Liu, C. Liu and C. Shen, Ind. Eng.
	Chem. Res., 2020, 59 , 12399-12408.
15	C. Liu, Y. Wang, N. Zhang, X. Yang, Z. Wang, L. Zhao, W. Yang, L. Dong, L. Che, G. Wang
	and X. Zhou, Nano Energy, 2020, 67, 104228.
16	S. Chen, J. Jiang, F. Xu and S. Gong, <i>Nano Energy</i> , 2019, 61 , 69-77.
17	Y. Pang, F. Xi, J. Luo, G. Liu, T. Guo and C. Zhang, RSC Advances, 2018, 8, 6719-6726.
18	C. Yao, X. Yin, Y. Yu, Z. Cai and X. Wang, Adv. Funct. Mater., 2017, 27, 1700794.
19	HJ. Kim, EC. Yim, JH. Kim, SJ. Kim, JY. Park and IK. Oh, <i>Nano Energy</i> , 2017, 33,
	130-137.
20	Z. Zhu, K. Xia, Z. Xu, H. Lou and H. Zhang, <i>Nanoscale Res. Lett.</i> , 2018, 13 , 365.
21	D. Choi, D. W. Kim, D. Yoo, K. J. Cha, M. La and D. S. Kim, <i>Nano Energy</i> , 2017, 36 , 250-
22	Y. Zhang, Z. Zhou, Z. Fan, S. Zhang, F. Zheng, K. Liu, Y. Zhang, Z. Shi, L. Chen, X. Li, Y.
22	Mao, F. Wang, Y. L. Sun and T. H. Tao, <i>Small</i> , 2018, 14 , 1802050.
23	W. Jiang, H. Li, Z. Liu, Z. Li, J. Tian, B. Shi, Y. Zou, H. Ouyang, C. Zhao, L. Zhao, R. Sun,
24	H. Zheng, Y. Fan, Z. L. Wang and Z. Li, <i>Adv. Mater.</i> , 2018, 30 , 1801895.
24	Q. Niu, L. Huang, S. Lv, H. Shao, S. Fan and Y. Zhang, <i>Nano Energy</i> , 2020, 74, 104837.
20 26	K. Sundaram, I. Yamada, K. Hata and A. Sekiguchi, <i>Sci. Rep.</i> , 2017, 7, 9267.
∠0	1. Q. Iran, J. K. Y. Lee, A. Uninnappan, W. A. D. M. Jayatnilaka, D. Ji, V. V. Kumar and S. Pamakrishna. I. Matar. Soi. Technol. 2020. 40, 00, 106
27	Kallaki Islina, J. Maler. Sci. Technol., 2020, 40, 99-100.
<i>∠</i> /	II. Jun, A. I Ju, I. Jiang, O. Juan, A. Fang, J. Deng, F. Unen, Y. Luo and H. Peng, Angew.

Chem. Int. Ed. Engl., 2014, 53, 9526-9531.

- 28 S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon and D. H. Kim, *Nat. Nanotechnol.*, 2018, **13**, 1048-1056.
- 29 K.-Y. Choi, Y.-R. Eo, K. Kim, H. Lee and J. Kim, *Fiber Polym.*, 2013, 14, 1556-1561.
- 30 B. H. Li, K. Yang and X. Wang, Neural Regen. Res., 2016, 11, 2012-2017.
- 31 M. Haghshenas, J. Magnes. Alloy., 2017, 5, 189-201.
- 32 Y. F. Zheng, X. N. Gu and F. Witte, *Mat. Sci. Eng. R*, 2014, 77, 1-34.
- 33 A. Palmroth, T. Salpavaara, I. Lyyra, M. Kroon, J. Lekkala and M. Kellomäki, ACS Biomater. Sci. & Eng., 2018, 5, 1134-1140.
- 34 Y. Jiang, M. Xu and V. K. Yadavalli, *Biosensors*, 2019, 9, 103.