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Figure S1. (a) 1H NMR and (b) FTIR spectra of F127-CHO. 
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Figure S2. 1H NMR spectrum of 2-aminoethyl acrylamide hydrochloride (AEAM). 

 

Table S1. Water contents of hydrogels with different compositions. 

Sample Water content (%) 

PAM 75.7 

PAMF 78.8 

PAAF 75.8 

PAAFC 75.6 

PAAFC-L 73.9 
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Figure S3. Weight change of PAAFC hydrogel with LiCl, NaCl and without addition of 

ions under ambient condition (70−80 RH%, 20 °C). 

 

 

Figure S4. (a) Toughness and (b) true stress of hydrogels with different compositions.  
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Figure S5. SEM images of the cross-sections of freeze-dried (a) PAM hydrogel, (b) 

PAAFC hydrogel, (c) and (d) PAAFC at higher magnifications. Red arrows indicating the 

MWCNTs. 
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Figure S6. Stress-strain curves of (a) PAAFC-L, PAM/MWCNT and P(AM-co-

AEMA)/MWCNT hydrogels, (b) hydrogels with different concentrations of LiCl, (c) 

PAAFC-L hydrogels prepared at different pH, and (d) PAAFC-L hydrogels with various 

MWCNT concentrations.  
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Figure S7. Photographs showing the PAAFC-L hydrogel self-healing for 24 h (a) before 

and (b) during stretching.  

 

 

Figure S8. DLS size characterization results of unmodified F127 micelles at various 

temperatures ranging from 10 to 60 °C. 
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Figure S9. (a) Rheological oscillatory temperature sweeps of PAAFC-L hydrogel at an 

angular frequency of 10 rad/s and a strain of 1%. (b) Stress-strains curves of PAAFC-L 

hydrogels healed at different temperatures. 

As shown in Figure S9b, the hydrogel healed at room temperature displayed the best anti-

stretching performance. Both lowering and raising temperature would impair the 

stretchability of self-healed PAAFC-L hydrogel. It is known the self-healing property of a 

hydrogel relies on several factors, where the most important ones are the dynamic nature 

of the cross-linking bonds and the mobility of polymer chains within the hydrogel. At 5 °C, 

the low chain mobility and increased hydrophobic associations in PAAFC-L hydrogel 

hinder the self-healing of the hydrogel. Considering the molecular mobility should be 

enhanced at higher temperatures (37 and 60 °C), the decreased self-repairing efficiency 

with the increasing of temperature above room temperature is most likely caused by the 

reduction of dynamicity of the cross-linking bonds. Among the dynamic bonds involved 

for PAAFC-L hydrogel construction, imine bonds play an important role in self-healing of 

the hydrogel. The dynamic nature of imine bond originates from the reversible imine 

formation reaction, i.e., imine hydrolysis and re-formation reach a thermodynamic 

equilibration under experimental conditions, and imine exchange reactions.1,2 Although 

raising temperature is favorable for exchange reactions, imine formation is also facilitated 

at the same time.3 That is, at elevated temperatures, the equilibrium of Schiff base reaction 

is pulled toward imine formation and the hydrolysis process would be suppressed, which 

might lead to reduced reversibility of the bond and the impaired self-healing behavior. 
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Figure S10. Electrochemical impedance spectra of hydrogels of various compositions. 

 

 

 

 

Figure S11. (a) Plot of gauge factor versus strain for PAAFC-L hydrogel calculated from 

the differentiation of the fitting curve of relative resistance change versus strain 

experimental data. (b) Relative resistance change-tensile strain loading-unloading curves 

of PAAFC-L hydrogel. Dash line indicating the recovery process. 
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Figure S12. (a) Relative resistance variation as a function of compression strain for 

PAAFC-L hydrogel. (b) Relative resistance response of the PAAFC-L hydrogel under 

cyclic pressure loading of 3 kPa (compression strain of 10%) for 100 cycles. (c) Magnified 

signal during 80-90 cycles. 
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Figure S13. Relative resistance changes of (a) slow and large eye movements, (b) rapid 

and small eye movements, and (c) head movements measured under awake state. (d) 

Relative resistance change curve showing the transition from deep to REM sleep.
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Table S2. Comparison of reported elastic hydrogels with this work 

Components of 

hydrogels 

Stretchability Stress at 

break 

(MPa) 

Elasticitya Self-

healing 

efficiencyb 

Stretchability 

after self-

healing 

Stimuli-

responsiveness 

Conductivity 

(S/m)  

Ref. 

Stretching Compression 

P(AM-co-AEAM) 

/MWCNT 

/F127-CHO/LiCl  

1205% 0.147 97% Strength 

recovery for 1000% 

strain at 20th cycle 

Complete 

recovery for 

90% strain 

53% 636% Thermo-

responsive 

3.96 This 

work 

Sodium alginate 

/NaCl/PAM 

3120% 0.75 98% Energy 

dissipation recovery 

for 1000% strain at 

20th cycle 

Complete 

recovery for 

98% strain 

n/a n/a n/a 0.023 4 

UPyHCBA/SDS 

/NaCl /PAM 

>10000% 0.004 93% Energy 

dissipation recovery 

for 500% strain at 2nd 

cycle 

n/a 100% >10000% n/a n/a 5 

Hydroxypropyl 

cellulose/PVA/NaCl 

975% 1.3 n/a Recovery after 

compression 

n/a n/a n/a 3.4 6 

GO/MeTro ~210% ~0.02 ~60% Strength 

recovery for 100% 

strain at 1000th cycle 

n/a n/a n/a n/a n/a 7 

PVA/PVP/CNC/Fe3+ 830% 2.1 60% Energy 

dissipation recovery 

for 500% strain at 2nd 

cycle 

n/a n/a ~150% n/a n/a 8 

PAM/AETA/sulfonat

e-modified silica 

nanoparticles 

370% 0.006 97% Energy 

dissipation recovery 

for 100% strain at 

100th cycle 

n/a n/a n/a n/a 2.9 9 

Agar/PAM/Stearyl 

methacrylate 

(SMA)/SDS 

5260% 0.267 40% of Energy 

dissipation recovery 

for 900% strain at 2nd 

cycle (2 min) 

n/a 40% 170% n/a n/a 10 

PAM/Alginate/Ca2+ 2200% 0.156 74% of Energy 

dissipation recovery 

for 600% strain at 2nd 

cycle (80 °C, 1 day) 

n/a n/a n/a n/a n/a 11 
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PAM/F127 diacrylate 2300% 0.27 98% Shape recovery 

for 1000% strain at 

2nd cycle (30 h) 

Complete 

recovery for 

90% strain 

n/a n/a Thermo-

responsive 

n/a 12 

PAAc/SMA/CTAB 

/NaBr 

800−900% 0.7−1.7 97% Strength 

recovery for 500% 

strain (5 min) 

Complete 

recovery for 

92% strain 

60−100% 

(treated at 

35 °C with 

surfactant) 

600−900% Thermo-

responsive 

n/a 13 

PAM/cucurbit[8]uril/

1-benzyl-3-

vinylimidazolium 

(host-guest)/MBAA 

2400% 0.13 100% Strength 

recovery for 800% 

strain at 2nd cycle (2 

min) 

n/a n/a n/a n/a n/a 14 

DMAA/MAAc 800% 1.3 100% of Energy 

dissipation recovery 

for 300% strain at 2nd 

cycle (60 min) 

n/a n/a n/a Thermo-

responsive 

n/a 15 

SBMA/dopamine-

modified clay/MBAA 

900% 0.077 85% Strength 

recovery for 400% 

strain at 2nd cycle (3 

min) 

n/a 80% 859% n/a 0.02 16 

PMPTC/ PNaSS 750–800% 3.7 100% of Energy 

dissipation recovery 

for 300% strain at 2nd 

cycle (120 min) 

n/a 66% 

(treated 

with NaCl) 

630% n/a n/a 17 

PAM/GO/Ca2+ 1100% 0.143 ~90% Strength 

recovery for 700% 

strain 

~90% 

recovery for 

80% strain 

n/a n/a n/a n/a 18 

PAM/CNT/SDS/ 
lauryl methacrylate 

3000% 0.267 ~90% Strength 

recovery for 1000% 

strain 

Recovery 

from 70% 

strain 

n/a n/a n/a 0.017 19 

PAM/oxCNT/gelatin 1041% 0.71 Recovery from 500% 

strain 
n/a n/a n/a n/a 0.067 20 

a The recovery percentages of the elasticity were obtained at room temperature with the wait time between cycles set within 1 min unless otherwise noticed.   

b The self-healing efficiencies were obtained by tensile tests at room temperature without external stimuli unless otherwise noticed. 
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