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Chemicals and reagents

Copper foam (1 mm) was obtained from GJY Electron. Mater. Co., Ltd. Ni(NO3),-6H>0,
CO(NH2)2, NH4F, NaaWO4-2H>O, NazVOs, NaxM00O4-2H>O, Fe(NO3)3-9H>0, and
C>oHsOH were obtained from Sinopharm Chemical Reagent Co., Ltd. Pt/C (platinum,
20% on carbon) was supplied by Alfa Aesar. Nafion was obtained from Sigma-Aldrich.
All chemicals were analytical reagent grade and used directly. The aqueous solution is
prepared by using deionized water (DIW, 18.25 MQ-cm)

Preparation of Ni(OH)2 NSs and tungstate-intercalated Ni(OH)2 (W-Ni(OH)2) NSs

First, Cu foam (3 x 3 ¢cm?, 1 mm) was cleaned with ethanol and DIW in the
ultrasonic generator for several times and dried in air. Subsequently, seal Cu foam into
a 100 mL Teflon autoclave filled with 80 mL of the aqueous solution containing 3.2
mmol Ni(NO3),:6H>0, 16 mmol CO(NH)>, and 7.7 mmol NH4F and place the Teflon
autoclave in an oven at 120 °C for 2 h. After the reaction, take out the sample, clean it
with ethanol and DIW for a few times, and dry it in air. For W-Ni(OH), NSs, the molar
ratio of W/Ni (nw/nni = 1/20, 1/10, and 1/5) is manipulated by controlling the different
dosage of Na;WO4:2H>0. Samples with W/Ni mole ratios of 1/20, 1/10, and 1/5 were
labeled as W-5 %-Ni(OH)> NSs, W-Ni(OH) NSs, and W-20 %-Ni(OH)2 NSs,
respectively.

Preparation of CuxO@Ni(OH)2, CuxO@W-Ni(OH)2, CuxO@Mo-Ni(OH)2, and
CuxO@V-Ni(OH)2

The Cu(OH)2 nanorod is generated via a typical chemical oxidation method based
on the previous literature.! The synthesis procedure of CuyO@Ni(OH), was almost the
same as the synthesis process of Ni(OH)2 NSs except replacing Cu foam with
Cu(OH),/Cu foam. Due to the reduction effect of urea, Cu(OH), was reduced to the
mixed phase of Cu;O and CuO (denoted as Cu,O). As for CuO@W-Ni(OH)g,
Cu,O@Mo-Ni(OH),, and Cu,O@V-Ni(OH),, additional 0.106 g of Na,WO4-2H>O0,
0.077 g of Na2M00O4-2H>0, and 0.058 g of NazVOg, respectively, into the system.

Preparation of NNH NSs, NWNH NSs, Cu20@NNH, Cu20@NWNH,
Cu20@NMoNH, and Cu20@NVNH

The H> plasma strategy reported in our previous work was employed to fabricate
the NNH heterostructure.” The detailed parameters are listed below: pressure of Ha: 40
Pa; activation time: 20 min; plasma power: 400 W. Notably, due to the reduction effect
of Hz plasma, Cu,O was totally reduced to Cu0.

Material characterizations

We carried out X-ray diffraction (XRD) analysis on X-pert Powder. Scanning



electron microscopy (SEM) was performed on Hitachi SU 8010. The JEOL JEM-2100
F was chosen to perform Transmission electron microscopy (TEM). We carried out the
high-resolution transmission electron microscopy (HRTEM) on the same equipment
with TEM. So did selected area electron diffraction (SAED). NICOTCT was used to
conduct Fourier transform infrared (FT-IR) test. Raman spectra were recorded on a
DXR SmartRaman with a 522 nm laser as an excitation source. Thermo Scientific
ESCALAB 250Xi was used to collect on the data of X-ray photoelectron spectroscopy
(XPS). The C 1s peak at 284.8 eV was used to calibrate the XPS data. The proportion
of metal elements was measured by Inductively coupled plasma-mass spectrometry
(ICP-MS) measurement (ICAPQ). The water contact angles were measured by contact
angle analyzer (SL200B, Solon Tech).

Electrochemical characterizations

The electrochemical tests were conducted on a CHI 760 workstation using a
Ag/AgCl reference electrode and a carbon counter electrode. The as-synthesized
materials were used as a working electrode. 1.0 M PBS (pH = 6.97) was used as the
electrolyte. All linear sweep voltammograms (LSVs) curves were iR-corrected (95 %)
and measured at a scan rate of 0.005 V s!. The calculation of electrochemical
impedance spectroscopy (EIS), electrochemical active surface area (ECSA), and
Faradic efficiency were based on our previous work.? The chronoamperometry (CA)
tests are carried out under constant voltages for stability tests. The turnover frequency
(TOF) values are estimated according to the equation: TOF = I/2NF, where I is current
(A), the factor 1/2 arrives from two electrons needed to form one hydrogen molecule,
N is the total number of active sites, and F is Faraday constant (96,485 C mol™?). The
N value is calculated according to the equation: n = Q/2F = (I*t)/2F = (1*V/u)/I2F =
S/(2F*u), where S is integrated effective area in CV recorded, and x is the scan rate (50
mV s ™).

Theoretical Calculations

All computations were conducted by spin-polarized density functional theory
(DFT) using the VASP.? By the way of expanding the wave function of valence electrons,
we set a plane-wave basis with a kinetic-energy cut-off of 400 eV. The generalized
gradient approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) functional
were employed.* The total energy range was set to be 10 eV. The force convergences
were 0.03 eV/A. We combined Ni(OH), nanosheet and Ni nanocluster to module the
complex structures. The Ni(OH), was modified by CO3 and WOs. To avoid the
interaction between the adjacent layers, we set 20 A vacuum space between sheets. The
3 x 3 x 1 k-points Monkhorst-Pack mesh was used to sample the Brillouin-zone
integration.

The computational hydrogen electrode (CHE) proposed by Norskov et al. was
used to explore the HER activity of the electrocatalysts.’ The Gibbs free energy of the
intermediates adsorbed on catalyst (GM) is obtained by equation 1:

AGy = AEy, + AZPE- TAS (1)
where AEM*, AZPE, and AS are the binding energy, zero-point energy change,



and entropy change of intermediates adsorption, respectively. Herein, the value of
AZPE and TAS were calculated by Norskov et al.8 and AEM* is calculated using
equation 2:

ABy, = Euy - Eo- En (2)
where EM* and E* are the total energy of basal surface with and without intermediates
M (H20, H, H2), respectively. EM is the energy of intermediate M.
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Figure S1. The Side view and top view of the model of NNH (a-b), the water adsorption
(c-d), the water dissociation (e-f), H adsorption (g-h) and H» desorption (i-j) on NNH
interface. Yellow balls: Ni atoms; Red balls: O atoms; White balls: H atoms; Green
balls: C atoms.
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Figure S2. The Side view and top view of the model of NWNH (a-b), the water
adsorption (c-d), the water dissociation (e-f), H adsorption (g-h) and H» desorption (i-
j) on NWNH interface. Yellow balls: Ni atoms; Red balls: O atoms; White balls: H
atoms; Green balls: C atoms; Orange ball: W atom.
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Figure §3. The DOS of (a) NNH and (b) NWNH. The charge distribution of (c) NNH
and (d) NWNH. Yellow balls: Ni atoms; Red balls: O atoms; White balls: H atoms;
Green balls: C atoms; Orange ball: W atom. (e) The DOS comparison of NNH and
NWNH. (f) The d-band center of NNH and NWNH. The ¢ is the electron energy, n4(e)
is the density of electron.
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Figure S4. (a) XRD patterns, (b) Raman spectra, and (c,d) FT-IR spectra of Ni(OH)>
NSs, W-Ni(OH)z2 NSs, NNH NSs, and NWNH NSs. The two bands at 875 cm™ and 903
cm! in the W-incorporated materials represent vi(W-O) and v3(W-O), respectively.® The
We-incorporated samples also exhibit strong characteristic peaks at 307, 351, 884, and
937 cm™! in Raman spectra, corresponding to the internal patterns of the vi, v2, v3, and
va of WO4* tetrahedron, respectively.’
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Figure §5. XRD patterns of Ni(OH)> NSs, W-5%-Ni(OH)> NSs, W-Ni(OH)> NSs, and
W-20%-Ni(OH), NSs. It is noted that no additional diffraction peaks associated with
other phase emerge when the mole radios of W to Ni are 5 % and 10 %. However, when
the ratio of W to Ni increases to 20 %, the characteristic peaks of NiWO4 occur. The
appearance of NiWOy indicates when the amount of introduced WO4* exceeds the
inserted limitation between layers, the overflowing WO4?>" tends to react with Ni** to
form NiWOs.
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Figure S6. The whole FT-IR spectra of Ni(OH), NSs, W-Ni(OH)> NSs, NNH NSs, and
NWNH NSs.
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Figure S7. (a) TEM image, (b) HRTEM image, and (c) SAED pattern of Ni(OH)> NSs.
(d-f) HAADF-STEM image and corresponding elemental mapping images of Ni(OH):
NSs.
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Figure S9. (a-b) TEM images, (c) HRTEM image, and (d) SAED pattern of W-Ni(OH),
NSs. (e-h) HAADF-STEM image and corresponding elemental mapping images of W-
Ni(OH)2 NSs.
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Figure S10. (a) LSV curves of Ni(OH)2 NSs, W-5 %-Ni(OH)> NSs, W-Ni(OH)2 NSs,
and W-20 %-Ni(OH)2 NSs in 1.0 M PBS.
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Figure S11. (a-c) HAADF-STEM image and corresponding elemental mapping images

of NNH NSs.
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Figure S12. The water contact angles of (a) Ni(OH)2 NSs, (b) W- Ni(OH), NSs, (¢)
NNH NSs, and (d) NWNH NSs. The porous Cu foam is not suitable to perform the tests
of contact angles. Thus, the copper sheet is applied as substrate to grow the nanosheets

and used for analyzing water contact angle.



Figure S13. (a) TOF curves and (b) ECSA normalized LSV curves of NNH NSs and
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Figure S14. CV curves of (a) Ni(OH)2 NSs, (b) W-Ni(OH)2 NSs, (¢) NNH NSs, and
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Figure S17. Digital graphs of Cu foam, Cu(OH), Cu,.O@W-Ni(OH);, and
Cu,O@NWNH.
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Figure S18. XRD patterns of Cu-based substrate during the reaction.

Figure §20. SEM image of Cu,O nanotubes
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Figure S22. (a) TEM image, (b) HRTEM image, and (c) SAED pattern of Cu,O@W-
Ni(OH). (d-h) HAADF-STEM image and corresponding elemental mapping images
of CuyO@W-Ni(OH)..
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Figure S23. (a) XRD patterns, (b) Raman spectra and (c,d) FT-IR spectra of Ni(OH):
NSs, W-Ni(OH)2 NSs, Cu,O@Ni-Ni(OH)2, and Cu2O@Ni-W-Ni(OH)..
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Figure §26. (a,b) The TEM images of CuzO@NWNH selected for EDS line scan. The
distribution of Cu (c), Ni (d), W (e), and O (f) along line. The inset of (b) is the whole
elemental distribution along line.
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Figure S27. (a) TOF curves and (b) ECSA normalized LSV curves of CuuO@NNH and
Cu,O@NWNH.
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Figure $29. CV curves of (a) NNH NSs, (b) NWNH NSs, (¢c) Cu2O@NNH, and (d)
CuO@NWNH in the double layer capacitive region at different scan rates.
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Figure §30. (a) LSV curves of Cu-based substrates in 1 M PBS.
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Figure S31. The gas chromatogram of Cu;O@NWNH in 100 min. (b) Faradaic
efficiency and (c) gas yield of hydrogen evolution on the CuO@NWNH as a function
of time at the current density of 10 mA cm™.
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Figure §32. CA test of CuO@NNH.
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Figure $33. (a) SEM image, (b) XRD pattern, (c) FT-IR spectra, and (d-f) XPS spectra
of CuO@NWNH after CA test.
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Figure $34. (a) XRD pattern and (b) SEM image of CuyO@NNH after CA test.
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Figure §35. XRD patterns of Cu,O@Mo-Ni(OH)2 and CuuO@NMoNH.

Figure $36. SEM images of (a) CuxO@Mo-Ni(OH), and (b) Cu2O@NMoNH.
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Figure §37. XRD patterns of CuxO@V-Ni(OH)2 and Cu2O@NVNH.
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Figure §39. FT-IR spectra of Cu.O@Mo-Ni(OH),;, CuuO@NMoNH, Cu.O@V-
Ni(OH)2, and Cu2O@NVNH.
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Figure S40. (a-c) The high-resolution Ni 2p (a), Mo 3d (b), and O 1s (¢) XPS spectra
of CuxO@Mo-Ni(OH), and Cu,O@NMoNH.
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Figure §41. (a-c) The high-resolution Ni 2p (a), V 2p (b), and O 1s (c) XPS spectra of
Cu,O@V-Ni(OH), and Cu;O@NVNH.
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Figure §42. LSV curves of CuuO@NNH, Cu,O@NMoNH, and Cu;O@NVNH.
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Figure §43. (a) SEM image and (b) XRD pattern of CucO@NiFe LDH.
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Figure §44. LSV curve of Cu,O@NiFe LDH for OER in 1.0 M PBS.
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Figure §45. Overall water splitting performance of CuyO@NWNH//Cu,O@NiFe LDH.
The inset: CA tests for the assembled electrolysis cell.

Table S1. Bond length in the structure of NNH and NWNH.

Structure C-O0 W-0 Ni-O Ni-O Average
A) A) (inner) (A) | (outer) (A) Distance
between Ni
and Ni(OH)2
(Ni-Ninioon).)
A
NNH 1.45 / 2.11 (Ni-O- 2.07 4.16
9
NWNH 1.46 1.92 | 2.07 (Ni-O- 2.08 4.03
W)




Table S2. The 26 and full width at half maxima (FWHM) of Ni(OH)-0.75H>0 (003),
Ni(OH)2 (001) and Ni(OH)2-0.75H20 (006) in Ni(OH)2, W-5%-Ni(OH)2, W-Ni(OH):
and W-20%-Ni(OH)s.

Ni(OH)2-0.75H20 (003) | Ni(OH)2 (001) 1:)‘58}1)2'0'75}120
FWHM
20 FWHM 20 FWHM 20
(degree
(degree) (degree) (degree) | (degree) | (degree) )
Ni(OH): 11.37 0.29 19.20 0.373 23.00 0.355
W5 %-
Ni(OH) 11.41 0.432 19.23 0.503 23.04 0.478
W- 11.27 0.56 19.16 0.605 22.95 0.542
Ni(OH) . . . . ) .
W 20 %-
11.22 54 19. .62 22. 1
Ni(OH)» 0.543 9.33 0.629 85 070

Table S3. The detailed values of fitted results in Figure. 4c, Rs: resistivity of solution;
CPE-T: Constant phase element — T; CPE-P: Constant phase element — P; R resistivity
of charge transfer

Sample Element Value
Rs 3.464
CPE-T | 0.0030562

NNH
CPE-P 0.86962
Ret 51.78
Rs 3.307
CPE-T | 0.013839
NWNH

CPE-P 0.8869
Ret 45.6

Table S4. Inductively coupled plasma—mass spectrometry (ICP-MS) results for
Ni(OH)2, W-Ni(OH)2, Cu,O@W-Ni(OH)2, CuO@NWNH, and CuO@NWNH after
i-1 test.

Samples Ni (mmol/L) | W (mmol/L) | W/Ni
W-Ni(OH), 1.015 0.098 9.7
Cu.O@W-Ni(OH)> 0.472 0.065 13.7
CuuO@NWNH 0.353 0.028 7.9
Cu,O@NWNH after i- | 0.290 0.039 13.4
t test




Table §5. Comparison of HER performance of the Cu2O@NWNH electrocatalyst with
other reported catalysts in 1.0 M PBS.

Electrocatalysts | Current Overpotential | Tafel slope | Stabilit | Ref.
density (mV) (mV dec) |y (h)
(mA cm?)
Cu20@ 10 39 37.2 48 This
NWNH 100 150 24 work
Pt-Co(OH)2 10 84 / / 8
100 253 /
np-CooS4P4 10 87 51 100 ?
100 174 /
CoP/Co-MOF 10 49 63 / 10
50 ~110 =17
Nio.1Coo.9P 10 125 103 =20 '
CoMOoNiS-NF- | 10 117 56 =20 12
31
IrosWos 10 35 59.3 ~ 13
Ni-SP 10 38 27 10 14
100 214 /
PMFCP 10 117 / / 1
CoW(OH)x 10 73.6 149.59 / 16
20 114.9 70
CrOx/Cu-Ni 10 48 64 / 17
30 ~100 ~28
VN@N;3N-Ni-6 | 10 85 97 40 18
100 295
Co-P@PC-850 | 10 85 49 20 19
Fe-CoP 10 134 50.1 10 20
CoP3/CoMoP-5 | 10 89 96.5 20 21
Table S6. Comparison of overall water splitting performance of

Cu,0@NWNH//Cu,O@NiFe LDH with other reported electrocatalysts in 1.0 M PBS.

Electrocatalysts Current density | Cell voltage | Stability | Ref.
(mA cm?) V) (h)
Cu20@NWNH// 10 1.82 45 This
CuO@NiFe LDH 100 2.27 15 work
CoP NA//CoP NA 10 1.92 10 22
Nio.1C00.9P//Nip.1Coo 9P 10 1.89 20 1
CoMoNiS-NF-31// 10 1.8 20 12
CoMoNiS-NF-31
Ni(So.5Se0.5)2//Ni(So5Seos)2 | 10 1.87 12 2
S-NiFe;04//S-NiFe2O4 10 1.95 24 H
CoO/CoSey//Co0/CoSez 10 2.18 10 »
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