## 1 Tailoring the Hetero-Structure of Iron Oxides in the Framework of

## 2 Nitrogen Doped Carbon for Oxygen Reduction Reaction and Zinc-

3 **Air Battery** Zhourong Xiao<sup>a</sup>, Chan Wu<sup>a</sup>, Wei Wang<sup>a</sup>, Lun Pan<sup>a,b</sup>, Jijun Zou<sup>a,b</sup>, Li Wang<sup>a,b</sup>, 4 Xiangwen Zhang<sup>a,b</sup>, Guozhu Li<sup>a,b\*</sup> 5 <sup>a</sup> Key Laboratory for Green Chemical Technology of Ministry of Education, School of 6 7 Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China <sup>b</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 8 9 300072, China \*Corresponding author. Tel. /fax: +86 22 27892340. 10 11 E-mail address: gzli@tju.edu.cn 12 13

## 1 Electrochemical measurement

2 CompactStat.h10800 potentiostat/galvanostat/electrochemical analyser (Ivium 3 Technologies Co., Netherland), combining with a rotation speed controller (Pine 4 Instrument Co., USA), was employed to perform the electrochemical measurement. A 5 three-electrode system was set up and used for electrochemical data collection. RHE 6 was used as the reference electrode, a graphite rod was selected as the counter electrode, 7 and the catalyst-coated GCE was served as the working electrode, respectively.

8 Cyclic voltammetry (CV) curves were collected in  $O_2$ -saturated or Ar-saturated KOH 9 solution (0.1 M) at a scan rate of 50 mV s<sup>-1</sup> from 0.164 V to 1.164 V (vs RHE, the 10 potential is relative to RHE unless specifically illustrated hereinafter). The polarization 11 plots for ORR (linear sweep voltammetry, LSV) were obtained using the rotating disk 12 electrode (RDE) technique in  $O_2$ -saturated KOH solution (0.1 M). Commercial Pt/C 13 (20 wt%) was obtained from HeSen Electric Co., and used as the benchmark.

The number of electrons transferred per O<sub>2</sub> molecule (n) in ORR was calculated using
Koutecky-Levich (K-L) equation listed below.

$$\frac{1}{J} = \frac{1}{J_{L}} + \frac{1}{J_{K}} = \frac{1}{B\omega^{1/2}} + \frac{1}{nFkC_{0}}$$
17 
$$B = 0.2nFC_{0}D_{0}^{2/3}v^{-1/6}$$

Where  $J_L$  is the limiting diffusion current density (mA cm<sup>-2</sup>), J is the measured current density (mA cm<sup>-2</sup>), F is the Faraday constant (96485 C mol<sup>-1</sup>),  $\omega$  is the rotating speed (rpm), C<sub>0</sub> is the bulk concentration of O<sub>2</sub> (1.2×10<sup>-6</sup> mol cm<sup>-3</sup>), v is the kinetic viscosity of the electrolyte (0.01 cm<sup>2</sup> s<sup>-1</sup>), k is the electron-transfer rate constant, and D<sub>0</sub> is the O<sub>2</sub> diffusion coefficient (1.9×10<sup>-5</sup> cm<sup>2</sup> s<sup>-1</sup>).

The electron transfer number (n) and hydrogen peroxide yield ( $H_2O_2$  %) were verified based on ring current ( $I_{ring}$ ) and disk current ( $I_{disk}$ ) by RRDE measurement at 1600 rpm. 1 Where N, representing the collection efficiency of Pt ring, equals to 0.37.



700

7.00

8

0.00K

Lsec: 50.0

1.00

29 Cnts

2.00

3.620 keV

9 Figure. S2 SEM image of the as-prepared Fe<sub>2</sub>O<sub>3</sub>@NC-450 and corresponding EDX spectrum.

3.00

Det: Octane Super

4.00

5.00

6.00





2 Figure. S4 HAADF-STEM images of the as-prepared samples. (a)  $Fe_2O_3$ @NC-0, (b)  $Fe_2O_3$ @NC-

- 350, (c) Fe<sub>2</sub>O<sub>3</sub>@NC-550 and (d) Fe<sub>2</sub>O<sub>3</sub>@NC-650.
- 4 .

3





 Table S1 - Textural properties of the as-prepared catalysts.

| Catalysts                              | BET Surface              | Pore Volume          | Average   | Iron oxides       | Ip/Icb |
|----------------------------------------|--------------------------|----------------------|-----------|-------------------|--------|
| Catalysis                              | Area (m <sup>2</sup> /g) | (cm <sup>3</sup> /g) | Size (nm) | (nm) <sup>a</sup> | ıD/ IG |
| Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 1366.3                   | 1.81                 | 9.76      | 6                 | 1.02   |
| Fe <sub>2</sub> O <sub>3</sub> @NC-350 | 1399.3                   | 1.71                 | 7.68      | 9                 | 1.00   |
| Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 1432.3                   | 1.61                 | 7.59      | 12                | 1.01   |
| Fe <sub>2</sub> O <sub>3</sub> @NC-550 | 1336.8                   | 1.65                 | 7.54      | 20                | 1.02   |
| Fe <sub>2</sub> O <sub>3</sub> @NC-650 | 1289.9                   | 1.60                 | 7.56      | 23                | 1.01   |

<sup>a</sup> Average particle size of iron species was measured from TEM images.

<sup>b</sup> According to Raman results and using the peak intensity ratio.

1

2



**Figure. S7** HRTEM images and corresponding FTT images of (a-b) Fe<sub>2</sub>O<sub>3</sub>@NC-350 and (c-d)

Fe<sub>2</sub>O<sub>3</sub>@NC-550.

 Table S2 - Surface composition of the as-prepared catalysts.

| Element | Fe <sub>2</sub> O <sub>3</sub> @NC- |
|---------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|         | 0                                   | 350                                 | 450                                 | 550                                 | 650                                 |
| C 1s    | 80.9                                | 83.6                                | 86.1                                | 87.5                                | 81.6                                |
| N 1s    | 6.9                                 | 6.9                                 | 6.5                                 | 6.0                                 | 5.5                                 |
| O 1s    | 10.5                                | 8.2                                 | 6.3                                 | 5.4                                 | 11.9                                |
| Fe 2p   | 1.7                                 | 1.3                                 | 1.1                                 | 1.1                                 | 1.0                                 |

**Table S3** - The ratio of different N species on the surfaces of different catalystsby XPS analysis.

| Element     | Fe <sub>2</sub> O <sub>3</sub> @NC | Fe <sub>2</sub> O <sub>3</sub> @NC | Fe <sub>2</sub> O <sub>3</sub> @ | Fe <sub>2</sub> O <sub>3</sub> @ | Fe <sub>2</sub> O <sub>3</sub> @ |
|-------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|
|             | -0                                 | -350                               | NC-450                           | NC-550                           | NC-650                           |
| Pyridinic N | 29.11                              | 26.25                              | 27.11                            | 34.92                            | 29.54                            |
| Pyrrolic N  | 20.86                              | 19.98                              | 18.20                            | 16.01                            | 17.46                            |
| Graphitic N | 36.45                              | 39.99                              | 41.57                            | 41.65                            | 41.15                            |
| Oxidized N  | 13.58                              | 13.78                              | 13.12                            | 7.42                             | 11.85                            |





Figure. S8 C 1s XPS spectra of the as-prepared samples.

|--|

| Catalysts                              | CV peak     | Eonset | E <sub>1/2</sub> | $\mathbf{J}_L$      |
|----------------------------------------|-------------|--------|------------------|---------------------|
|                                        | (V. vs RHE) | (V. vs | (V. vs RHE)      | mA cm <sup>-2</sup> |
|                                        |             | RHE)   |                  |                     |
| Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 0.811       | 0.997  | 0.851            | 6.12                |
| Fe <sub>2</sub> O <sub>3</sub> @NC-350 | 0.824       | 1.000  | 0.842            | 6.34                |

| Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 0.829 | 1.001 | 0.838 | 6.71 |
|----------------------------------------|-------|-------|-------|------|
| Fe <sub>2</sub> O <sub>3</sub> @NC-550 | 0.839 | 1.002 | 0.844 | 5.80 |
| Fe <sub>2</sub> O <sub>3</sub> @NC-650 | 0.844 | 0.998 | 0.846 | 5.69 |
| 20 wt% Pt/C                            | 0.826 | 0.994 | 0.828 | 5.19 |



3 Figure. S9 Linear sweep voltammograms recorded in O<sub>2</sub>-saturated 0.1 M KOH at a scan rate of

10 mV s<sup>-1</sup>.



Figure. S11 Electron transfer number and H<sub>2</sub>O<sub>2</sub> yield (0.45 V. RHE) on various catalysts.



**Table S5** - The peak power density andcorresponding current density.

| Catalysts                              | Peak power             | Current                |
|----------------------------------------|------------------------|------------------------|
|                                        | density                | density                |
|                                        | (mW cm <sup>-2</sup> ) | (mA cm <sup>-2</sup> ) |
| Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 98.2                   | 158.3                  |
| Fe <sub>2</sub> O <sub>3</sub> @NC-350 | 150.6                  | 235.0                  |
| Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 156.6                  | 255.0                  |
| Fe <sub>2</sub> O <sub>3</sub> @NC-550 | 117.0                  | 188.3                  |
| Fe <sub>2</sub> O <sub>3</sub> @NC-650 | 101.4                  | 165.0                  |
| 20 wt% Pt/C                            | 68.0                   | 98.5                   |

Table S6 - Comparison of zinc-air performance between Fe<sub>2</sub>O<sub>3</sub>@NC-450 and those

| reported previously in other's works. |  |
|---------------------------------------|--|

| Catalysts                               | Loading                | Power density          | Relative to 20 | Refs. |
|-----------------------------------------|------------------------|------------------------|----------------|-------|
|                                         | (mg cm <sup>-2</sup> ) | (mW cm <sup>-2</sup> ) | wt% Pt/C       |       |
| Fe-N-CNBs-600                           | 1.000                  | 257                    | 1.29           | 1     |
| m-FeSNC                                 | 2.000                  | 221                    | 1.24           | 2     |
| 6%Fe-S-N CNN                            | 1.000                  | 132                    | 1.81           | 3     |
| CoFe/N-GTC                              | 1.000                  | 203                    | 1.92           | 4     |
| ZnCo@NC                                 | 1.200                  | 152                    | 1.47           | 5     |
| Co/CoN <sub>x</sub> /NC                 | -                      | 96.6                   | 0.99           | 6     |
| Co/Co <sub>3</sub> O <sub>4</sub> /PGS  | 0.900                  | 118.2                  | 1.31           | 7     |
| Co/Co-N-C                               | -                      | 132                    | 1.20           | 8     |
| Co-SAs@NC                               | 1.750                  | 105.3                  | 0.95           | 9     |
| Fe@C <sub>2</sub> N                     | 1.000                  | 123                    | 1.06           | 10    |
| Fe@FeNC                                 | 2.000                  | 113                    | 1.40           | 11    |
| Fe/Fe <sub>5</sub> C <sub>2</sub> @NC   | 1.000                  | 91                     | 1.12           | 12    |
| Fe/Fe <sub>3</sub> C/NC                 | 0.300                  | 200                    | 1.03           | 13    |
| Fe/Fe <sub>2</sub> O <sub>3</sub> /FeNC | 2.000                  | 193                    | 1.12           | 14    |
| Fe <sub>3</sub> O <sub>4</sub> @NHCS-2  | 1.000                  | 133                    | 1.16           | 15    |



2 3

Figure. S14 Initial discharge for zinc-air test of Fe<sub>2</sub>O<sub>3</sub>@NC-T.





Figure. S15 XPS spectra of the Fe 2p core level region for the as-prepared catalysts.







precursor and corresponding catalysts treated in H<sub>2</sub> atmosphere at 450 °C.

Figure. S17 Polarization and power density curves of the zinc-air batteries using the  $yFe_2O_3@NC-T$  catalysts and 20 wt% Pt/C as the cathode.

| Catalysts                                 | Peak power             | Current        |  |
|-------------------------------------------|------------------------|----------------|--|
|                                           | density                | density        |  |
|                                           | (mW cm <sup>-2</sup> ) | $(mA cm^{-2})$ |  |
| 0.2Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 45.3                   | 71.7           |  |
| 0.2Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 98.5                   | 171.7          |  |
| 0.4Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 69.6                   | 125.0          |  |
| 0.4Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 123.6                  | 215.0          |  |
| 1.2Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 117.1                  | 191.9          |  |
| 1.2Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 132.3                  | 209.1          |  |
| 1.6Fe <sub>2</sub> O <sub>3</sub> @NC-0   | 112.3                  | 186.2          |  |
| 1.6Fe <sub>2</sub> O <sub>3</sub> @NC-450 | 112.1                  | 180.0          |  |

**Table S7** - The peak power density andcorresponding current density.



**Figure. S18** The discharge curves of the zinc-air batteries using the yFe<sub>2</sub>O<sub>3</sub>@NC-T catalysts.

- ~

## 1 References

- L. Cao, Z.-h. Li, Y. Gu, D.-h. Li, K.-m. Su, D.-j. Yang and B.-w. Cheng, *Journal of Materials Chemistry A*, 2017, 5, 11340-11347.
- Z. Guan, X. Zhang, W. Chen, J. Pei, D. Liu, Y. Xue, W. Zhu and Z. Zhuang, *Chemical communications*, 2018, 54, 12073-12076.
- 6 3. H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu, Q. Liang, S. Liu and S. Mu, *Applied Catalysis B:*7 *Environmental*, 2019, **250**, 143-149.
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li and H. Fu, *Angewandte Chemie*, 2018,
   57, 16166-16170.
- B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen and H. Yin, *Advanced Functional Materials*, 2017, 27, 1700795.
- C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S. J. Pennycook
   and J. Wang, *Energy Storage Materials*, 2019, 16, 243-250.
- 14 7. Y. Jiang, Y.-P. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L.
- 15 Yang, D. Su, W. Chu and Z. Chen, *Advanced Energy Materials*, 2018, **8**, 1702900.
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li and H. Fu, *Adv Mater*,
   2019, **31**, e1901666.
- X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu and Y. Deng, *Angewandte Chemie*, 2019,
   58, 5359-5364.
- F. L. Javeed Mahmood, Changmin Kim, Hyun-Jung Choi, Ohhun Gwon, and J.-M. S. Sun Min Jung, Sung-June Cho, Young-Wan Ju, Hu Young Jeong, Guntae Ki, Jong-Beom Baek,
   *Nano Energy*, 2018, 44, 304–310.
- 23 11. Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo, W. Zhao, T. Xu, W. Wu, M. Wu and J.-S. Hu,
   24 Applied Catalysis B: Environmental, 2019, 251, 240-246.
- L. Song, T. Wang, L. Li, C. Wu and J. He, *Applied Catalysis B: Environmental*, 2019, 244, 197-205.
- 27 13. G. S. P. Jang-Soo Lee, Sun Tai Kim, Meilin Liu,\* and Jaephil Cho\*, *Angew. Chem. Int. Ed.*,
  28 2013, **52**, 1026-1030.
- 29 14. Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang and H. Zhao, *Nano* 30 *Research*, 2016, 9, 2123-2137.
- 31 15. Y. Li, H. Huang, S. Chen, X. Yu, C. Wang and T. Ma, *Nano Research*, 2019, **12**, 2774-2780.