Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Design of Unique Porous Carbons with Double Support Structure: Toward Overall Performance by Employing Bidirectional Anchoring Strategy

Yujing Liu, Chengyao Zhao, Qi Liu, Xin Zhou, Zhongqiu Liu, Jinmao You, Anguo Ying*

School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273100, China

E-mail: yinganguo@163.com

Figure S1 SEM image of C4VP.

Figure S2 SEM images of P(St-co-4VP)@PAN-based carbons obtained via the template method. (a,c) honeycomb structure. (b) hollow structure.

Figure S3 SEM images of P(St-co-4VP)@PAN-derived carbon materials with different PAN loading via the bidirectional anchoring method. (a) 0.04 g. (b) 0.08 g.

Figure S4 SEM image of CPCS treated at 950 °C.

Figure S5 XPS C 1s spectra.

Figure S6 GCD curves of CPCS with current densities ranging from 4 to 50 A g⁻¹.

Figure S7 (a-b) CV curves of HCM at different scan rates. (c-d) GCD curves of HCM at different current densities. (e-f) CV curves of HPC at different scan rates. (g-h) GCD curves of HPC at different current densities.

Figure S8 (a) TEM image of HPC with hollow structure. (b) HRTEM image of HPC. (c) HRTEM image of HCM. (d) Wide-angle PXRD patterns of HCM and HPC.

Figure S9 (a-b) CV curves of C4VP at different scan rates. (c-d) GCD curves of C4VP at different current densities.

Figure S10 (a, c, e) Plots of reciprocal of calculated gravimetric capacity (C⁻¹) vs. square root of scan rate ($v^{1/2}$) of the CPCS, C4VP and HCM, separately. (b, d, f) Plots of calculated gravimetric capacity (C) vs. reciprocal of square root of scan rate ($v^{-1/2}$) of the CPCS, C4VP and HCM, separately. (Insert: the algebraic equations of the fitting lines)

Samples	SSA (m ² g ⁻¹)	V (cm ³ g ⁻¹)	Packing density (g cm ⁻³)
CPCS	26.95	0.556	0.75
HPC	23.22	0.228	0.78
НСМ	18.36	0.178	0.79

Table S1 Summary of the specific surface areas and packing densities of the CPCS, HPC and HCM.

Materials	SSA (m ² g ⁻¹)	C _G (F g ⁻¹)	C _V (F cm ⁻³)	C _A (µF cm ⁻²)	Ref.
r-GO ^a	264.4	225	-	1.19	1
N, P, Si-CNF ^b	10.94	243.7	253.4	-	2
SiPDC ^c	641.51	276	-	0.43	3
3D-B, N-CNF ^d	351.5	295	-	158.2	4
NS-GNP ^e	245	289	214	-	5
NPSiDC ^f	228.4	318	0.67	-	6
PNDC ^g	362.8	270	0.42	-	7
CPCS ^h	26.95	308.89	231.67	1146	This work

Table S2 The electrochemical performance of doped carbons without activation treatment.

a. Reduced graphene oxide; b. N, P, Si- tri-doped carbons; c. Si, N-doped carbon; d. N, B-codoped 3D hierarchical porous carbon network; e. N, S-co-doped graphene nanobots; f. N, P, Sitri-doped C; g. P, N co-doped C. h. Coralloid-like porous carbon sheets.

Supplementary References

- [1] S. H. Tamboli, B. S. Kim, G. Choi, H. Lee, D. Lee, U. M. Patil, J. Lim, S. B. Kulkarni, S. Chan Jun, H. H. Cho, Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper, *J. Mater. Chem. A*, **2014**, *2*, 5077.
- [2] Y. Yang, X. Hou, C. Ding, J.-L. Lan, Y. Yu, X. Yang, Eco-friendly fabricated nonporous carbon nanofibers with high volumetric capacitance: improving rate performance by tridopants of nitrogen, phosphorus, and silicon, *Inorg. Chem. Front.*, 2017, 4, 2024.
- [3] S. K. Ramasahayam, U. B. Nasini, A. U. Shaikh, T. Viswanathan, Novel Tannin-Based Si, P Co-Doped Carbon for Supercapacitor, Applications, *J. Power Sources*, 2015, 275, 835.
- [4] B. Dahal, T. Mukhiya, G. P. Ojha, A. Muthurasu, S.-H. Chae, T. Kim, D. Kang, H. Y. Kim,

In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors, *Electrochim. Acta*, **2019**, 301, 209.

- [5] K. Gopalsamy, J. Balamurugan, T. D. Thanh, N. H. Kim, J. H. Lee, Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors, *Chem. Eng. J.*, **2017**, 312, 180.
- [6] S. K. Ramasahayam, Z. Hicks, T. Viswanathan, Thiamine-Based Nitrogen, Phosphorus, and Silicon Tri-doped Carbon for Supercapacitor Applications, *ACS Sustainable Chem. Eng.*, 2015, 3, 2194.
- [7] S. K. Ramasahayam, A. L. Clark, Z. Hicks, T. Viswanathan, Spent coffee grounds derived P, N co-doped C as electrocatalyst for supercapacitor applications, *Electrochim. Acta*, 2015, 168, 414.