Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material for:

FeS₂-anchored transition metal single atoms for high-efficient overall water splitting: a DFT computational screening study

Yingju Yang, Jing Liu*, Feng Liu, Zhen Wang and Dawei Wu

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding Author:

* Tel: +86 27 87545526; fax: +86 27 87545526;

E-mail address: liujing27@mail.hust.edu.cn.

Content includes: one Table and six Figures.

Table S1 The binding energy (E_b) , cohesive energy (E_c) , Mulliken charge (Q), magnetic moment (M), average bond length (d_{M-S}) and d-band center (ε_d) of TM atom adsorption on FeS₂(100) surface. **Fig. S1** Schematic illustration of the structure model of FeS₂ surface. (a) Top view. (b) Side view. a, b, c, and d denote hollow, S₄, S₃, and Fe sites, respectively. S₃ and S₄ denote 3-fold and 4-fold coordinated sulfur atoms, respectively.

Fig. S2 The most stable structure of TM single atoms adsorption on the $FeS_2(100)$ surface.

Fig. S3 Band-edge positions and bandgaps of M@FeS₂ catalyst.

Fig. S4 Partial density of states (PDOS) of M@FeS2 catalysts: (a) Sc@FeS2, (b) Ti@FeS2, (c)

V@FeS₂, (d) Cr@FeS₂, (e) Mn@FeS₂, (f) Co@FeS₂, (g) Ni@FeS₂, (h) Cu@FeS₂, and (i) Zn@FeS₂. The dashed lines denote the Fermi level.

Fig. S5 Potential energy evolution of M@FeS₂ catalysts at 500 K in the water-phase environment. (a) Sc@FeS₂, (b) Ti@FeS₂, (c) V@FeS₂, (d) Cr@FeS₂, (e) Mn@FeS₂, (f) Fe@FeS₂, (g) Co@FeS₂, (h) Ni@FeS₂, (i) Cu@FeS₂, and (j) Zn@FeS₂.

Fig. S6 Gibbs free energy diagram of the HER over S atom of M@FeS₂ catalysts.

TM atoms	$E_{\rm b}({\rm eV})$	$E_{\rm c}({\rm eV})$	Q (e)	$M\left(\mu_{\mathrm{B}} ight)$	$d_{\text{M-S}}$ (Å)	$\varepsilon_{\rm d}({\rm eV})$
Sc	-4.93	-4.16	0.71	-0.016	2.504	-2.13
Ti	-5.54	-5.91	0.35	0.000	2.275	-2.13
V	-5.79	-7.11	0.09	0.000	2.165	-1.77
Cr	-5.57	-7.44	-0.11	2.976	2.107	-1.47
Mn	-5.15	-6.77	-0.22	0.000	2.085	-1.64
Fe	-4.61	-6.30	0.32	1.701	2.072	-1.59
Co	-4.22	-5.68	-0.32	0.000	2.084	-1.88
Ni	-3.34	-4.68	-0.03	-0.026	2.141	-1.72
Cu	-1.96	-3.53	0.10	0.002	2.327	-2.36
Zn	-0.78	-0.46	0.31	0.001	2.505	-6.21

Table S1 The binding energy (E_b) , cohesive energy (E_c) , Mulliken charge (Q), magnetic moment (M), average bond length (d_{M-S}) and d-band center (ε_d) of TM atom adsorption on FeS₂(100) surface.

Fig. S1 Schematic illustration of the structural model of FeS_2 surface. (a) Top view. (b) Side view. a, b, c, and d denote hollow, S_4 , Fe, and S_3 sites, respectively. S_3 and S_4 denote 3-fold and 4-fold coordinated sulfur atoms, respectively.

Fig. S2 The most stable structure of TM single atoms adsorption on the $FeS_2(100)$ surface.

Fig. S3 Band-edge positions and bandgaps of $M@FeS_2$ catalysts.

Fig. S4 Partial density of states (PDOS) of M@FeS₂ catalysts: (a) Sc@FeS₂, (b) Ti@FeS₂, (c) V@FeS₂, (d) Cr@FeS₂, (e) Mn@FeS₂, (f) Co@FeS₂, (g) Ni@FeS₂, (h) Cu@FeS₂, and (i) Zn@FeS₂. The dashed lines denote the Fermi level.

Fig. S5 Potential energy evolution of M@FeS₂ catalysts at 500 K in the water-phase environment. (a) Sc@FeS₂, (b) Ti@FeS₂, (c) V@FeS₂, (d) Cr@FeS₂, (e) Mn@FeS₂, (f) Fe@FeS₂, (g) Co@FeS₂, (h) Ni@FeS₂, (i) Cu@FeS₂, and (j) Zn@FeS₂.

Fig. S6 Gibbs free energy diagram of the HER over S atom of M@FeS₂ catalysts.