Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Materials

Mo-Doped Inducing Amorphous and Sulfur Vacancy Healing in VS₄ for Enhancing the

Storage of Lithium Ions

Lü-qiang Yu^{a,b}, Shi-Xi Zhao^{a*}, Ye Yuan^{a,b}, Guo-dan Wei^c, Jian-Wei Zhao^d

^a Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China

^b School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

^cTsinghua- Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China

^d Shenzhen HUASUAN Technology Co. Ltd. Shenzhen, 518055, China

* Corresponding author: E-mail: zhaosx@sz.tsinghua.edu.cn (S.X. Zhao).

Table S1. The atomic content of various elements of four materials through EDX.

Element		Atomic content (%)	(%)	
Sample	Мо	V	S	
VS ₄	0	24.02	75.98	
$Mo_{0.01}V_{1.56}S_4$	0.18	27.97	71.86	
Mo _{0.03} V _{2.13} S ₄	0.45	34.59	64.96	
$Mo_{0.04}V_{2.10}S_4$	0.66	34.16	65.17	

Material	$S_{BET} (m^2 \cdot g^{-1})$	Total pore volume	(cm ³ ·g ⁻¹)	Pore size (nm)
VS ₄	10.91	0.025		2.10
$Mo_{0.01}V_{1.56}S_4$	21.17	0.052		1.64
Mo _{0.03} V _{2.13} S ₄	29.62	0.17		1.21
Mo _{0.04} V _{2.10} S ₄	25.70	0.14		1.21

Table S2. The pore parameters of the as-prepared samples.

 $\textbf{Fig. S1. EDX mapping (V: red, S: yellow, and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.08}V_{0.92}S_4 (b_1-b_4), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_4 (a_1-a_3), Mo_{0.15}V_{0.85}S_4 (c_1-c_4), and Mo: green) of VS_8 (a_1-a_2), MO_{0.15}V_{0.85}S_8 (c_1-c_4), and MO: green) of VS_8 (a_1-a_2), MO_{0.15}V_{0.85}S_8 (c_1-c_4), and MO: green) of VS_8 (a_1-a_2), MO_{0.15}V_{0.85}S_8 (c_1-c_4), and MO: green) of VS_8 (c_1-c_4), and MO: green) of VS_$

 $Mo_{0.33}V_{0.67}S_4\ (d_1\hbox{-} d_4).$

Fig. S2. The selected galvanostatic discharge-charge curves of VS₄ (a), Mo_{0.08}V_{0.92}S₄ (b), Mo_{0.15}V_{0.85}S₄ (c), and Mo_{0.33}V_{0.67}S₄ (d) at 200 mA·g⁻¹; The *b*-values (e) of four samples calculated from the CV curves; The charge specific capacity of four materials at different current densities (f) and 200 mA·g⁻¹ (g).

Material	First discharge	First discharge capacity	Coulombic
	capacity (mAh·g ⁻¹)	(mAh·g ⁻¹)	efficiency (%)
VS ₄	1189.5	592.4	49.80
$Mo_{0.01}V_{1.56}S_4$	1152.8	791.5	68.66
$Mo_{0.03}V_{2.13}S_4$	1392.3	684.8	49.18
$Mo_{0.04}V_{2.10}S_4$	1211.9	542.9	44.79

Table S3. The first coulombic efficiency of four samples.

Fig. S3. The single step of GITT curves and voltage changes as a function of $\tau^{l/2}$ of VS₄ (a, c) and Mo_{0.03}V_{2.13}S₄ (b, d).

Fig. S4. Density of states (a) of each element of VS₄ and Mo-doped VS₄; The content (b) of V at different states after various cycles and XPS spectra of Mo 3d (c) at different state; Digital photos (d), HRTEM (e), and SAED images (f) of $Mo_{0.03}V_{2.13}S_4$ after 500 cycles.

Material	Morphology	Structure	Capacity	Ref.	
VC DANI	Subara	Crustallina	A reversible capacity of 755 mAh \cdot g ⁻¹	1	
v 54-1 AINI	Sphere	Crystannie	after 50 cycles at 0.1 A·g ⁻¹	1	
VS-RGO	Nanonarticle	Crystalline	A reversible capacity of 954 mAh·g ⁻¹	2	
V 54-KOO	Nanoparticie		after 100 cycles at 0.1 A g ⁻¹		
VS-RGO	Nanonarticle	Crystalline	A reversible capacity of 890.8 mAh·g ⁻¹	-1	
		Crystannie	after 80 cycles at 0.2 A·g ⁻¹	3	
VSCNTs	Nanonarticle	Crystalline	A reversible capacity of 447 mAh g-1	4	
v 54-CIVIS	Nanoparticie	Crystannie	after 400 cycles at 1 A g ⁻¹		
VS ₄ -porous	Flower	Crystalline	A reversible capacity of 562.4 mAh g ⁻¹	5	
carbon	carbon		after 150 cycles at 0.1 A · g ⁻¹	5	
VS.	S. Urchin Crysta	Crystalline	A reversible capacity of 500 mAh g ⁻¹	6	
V 54 OTCHIN		Crystalline	after 100 cycles at 0.1 $A \cdot g^{-1}$	0	
VS.	Nanonarticle	Janoparticle Crystalline	A reversible capacity of 452 mAh g ⁻¹	7	
v 64 IV	ranoparticie		after 150 cycles at 0.5 $A \cdot g^{-1}$		
MoserVareS	Flower	Amornhous	A reversible capacity of 671.4 mAh·g ⁻¹	This	
1 V1U 0.03 V 2.13 S 4	TIOWEI	Amorphous	after 500 cycles at 0.2 A·g ⁻¹	work	

Table S4. The structure and capacity of the VS₄ and its composites as anode materials for LIBs.

Table S5. Parameters of the impedance and diffusion of lithium ion calculated from the EIS of as-

Material	$R_{e}(\Omega)$	$R_{ct}(\Omega)$	$D_{Li}^{+}(cm^{2}\cdot s^{-1})$
VS ₄	2.44	121	1.19*10-11
Mo _{0.01} V _{1.56} S ₄	1.92	95	2.10*10-11
Mo _{0.03} V _{2.13} S ₄	3.61	82.5	7.62*10-11
$Mo_{0.04}V_{2.10}S_4$	2.32	50	1.30*10-10

obtained materials.

References:

- 1 Y. Zhou, Y. Li, J. Yang, J. Tian, H. Xu, J. Yang and W. Fan, ACS Appl. Mater. Inter., 2016, 8, 18797-18805.
- C. S. Rout, B. Kim, X. Xu, J. Yang, H. Y. Jeong, D. Odkhuu, N. Park, J. Cho and H. S. Shin, *J. Am. Chem. Soc.*, 2013, 135, 8720-8725.
- 3 Q. Li, Y. Chen, J. He, F. Fu, J. Lin and W. Zhang, J. Alloy. Compd., 2016, 685, 294-299.
- 4 S. Wang, W. Ma, X. Zang, L. Ma, L. Tang, J. Guo and B. A. X. Z. Qingyun Liu, ChemSusChem, 2019, 12, 1-9.
- 5 L. Q. Yu, S. X. Zhao, Q. L. Wu, J. W. Zhao and G. D. Wei, *Adv. Funct. Mater.*, 2020, **30**, 2000427.
- 6 G. Yang, B. Zhang, J. Feng, H. Wang, M. Ma, K. Huang, J. Liu, S. Madhavi, Z. Shen and Y. Huang, ACS Appl. Mater. Inter., 2018, 10, 14727-14734.
- 7 L. Wang, L. Xue, J. Wang, L. Miao, W. Chen, M. Wan, W. Gong, Q. Liu, N. Zhang and W. Zhang, *J. Alloy. Compd.*, 2018, 768, 938-943.