Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Boosting the performance of a silicon photocathode for photoelectrochemical hydrogen production by immobilization of a cobalt tetraazamacrocyclic catalyst

Chengming Nie, Chang Liu, Lunlun Gong and Mei Wang*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China. E-mail: symbueno@dlut.edu.cn

Experimental details

Materials and instruments

Silver nitrate (99%), pyruvic acid (99%), ammonium persulfate (99%), cobalt(II) bromide (99%), 4-bromopyridine hydrochloride (98%), methyl isonicotinate (>98%), diethyl phosphite (99%), tetrakis(triphenylphosphine)palladium (99%), and bromotrimethylsilane (98%) were purchased from Aladdin®. 3,3'-Diaminodipropylamine (98%) was purchased from Energy Chemical. Silicon wafers (10–20 Ω ·cm) were purchased from Hangzhou Bojing Science and Technology Limited Company, and titanium oxide paste (TiO₂ nanoparticles, 18–20 nm, anatase, hydrophilicity) was purchased from Heptachroma company in Dalian, China. All reagents were used as received without further purification.

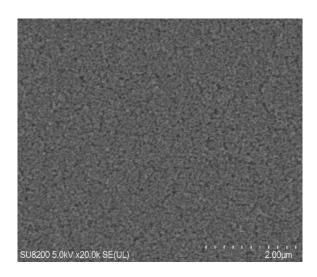
¹H NMR spectra were measured on a Bruker Avance II 500 instrument at 298 K. Mass spectra were obtained on an MALDI Micro MX and LTQ Orbitrap XL instrument. The attenuated total reflectance fourier-transform infrared (ATR-FTIR) spectra were recorded on a Thermo Fisher Nicolet iN10 spectrometer. Field-emission scanning electron microscope (SEM) images were recorded on a Nova NanoSEM 450 instrument. X-ray photoelectron spectroscopy (XPS) spectra were obtained on an ESCALAB 250Xi (Thermo Scientific). The loading amount of the cobalt catalyst on Si/TiO₂ electrode was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) (PerkinElmer 2000 DV).

Preparation of complex Co(CR-DCP)

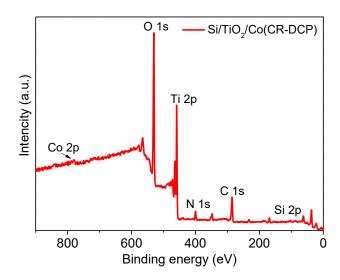
The 2,6-dicarboxypyridin-4-yl (DCP)-functionalized tetraazamacrocyclic cobalt(III) complex [Co(CR-DCP)Br₂]Br was prepared as the procedure described in our previous report.^{S1} Complex Co(CR-DCP) was obtained in a yield of 80–85%. MS (ESI) calcd for [M–Br]⁺ (C₂₂H₂₅Br₂CoN₅O₄): m/z = 641.96, found: 642.01. ¹H NMR (500 MHz, DMSO- d_6): δ 13.83 (br s, 2H), 9.21 (s, 2H), 9.02 (s, 2H), 6.74 (t, J = 9.5 Hz, 1H), 4.24 (d, J = 10.8 Hz, 2H), 3.62–3.55 (m, 4H), 3.25 (t, J = 9.5 Hz, 2H), 3.08 (s, 6H), 2.29 (d, J = 12.8 Hz, 2H), 2.11 (m, 2H). ¹³C NMR (125.8 MHz, CD₃OD): δ 180.20, 166.98, 159.68, 151.27, 150.75, 148.26, 127.61, 127.23, 52.93, 51.94, 27.56, 17.99.

Fabrication of the Si/TiO₂/Co(CR-DCP) hybrid photocathode

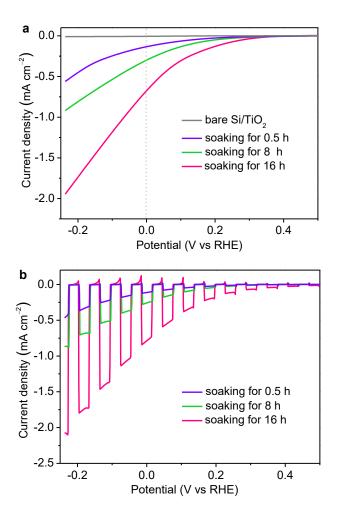
The Si/TiO₂ electrode was fabricated referring to the literature procedure. S2 The TiO₂ film was coated on the surface of the freshly treated p-Si wafer by doctor-blading of a paste of TiO₂ nanoparticles (18–20 nm), and then Si/TiO₂ was annealed following a reported controlled sintering procedure up to 450 °C under atmospheric conditions. Then the DCP-functionalized cobalt tetraazamacrocyclic catalyst was immobilized on the Si/TiO₂ electrode by immersing the electrode in the MeOH solution of the cobalt catalyst (1.0 mM) for 16 h in the dark. Afterward, the electrode was thoroughly rinsed with MeOH to remove the nonbonded catalyst molecules on the surface of the electrode. In addition, the Si/TiO_{2(5 nm,ALD)}/Co(CR-DCP) electrode with a 5 nm TiO₂ film deposited by using an ALD system (YUANTEC, Ensure Scientific Group) was also fabricated with an essentially identical procedure. The amount of immobilized cobalt catalyst on Si/TiO₂ electrode was determined by ICP-OES analysis. The following manufacturing process for encapsulating the hybrid electrode was identical to that as described in our previous report. S3

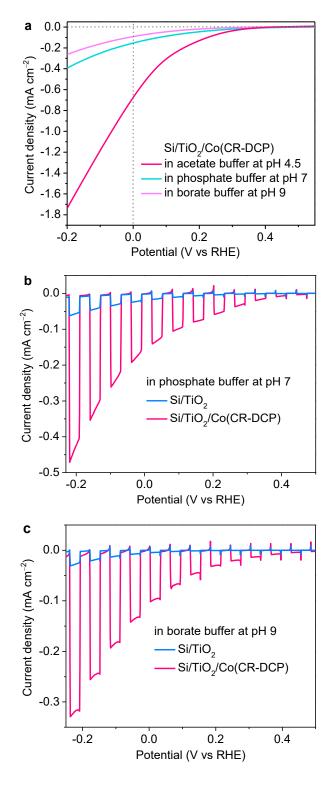

Photoelectrochemical measurements

All photoelectrochemical measurements were performed in a three-electrode cell under Ar at 25 °C using an electrochemical workstation (CHI 650E) with the as-fabricated Si/TiO₂/Co(CR-DCP) photocathode as the working electrode (geometric area 1 cm⁻²), a Ag/AgCl electrode as the reference electrode, and a Pt foil (1 cm²) as the counter electrode. A 300 W Xenon arc lamp (100 mW cm⁻², AM 1.5G) with an optical filter ($\lambda > 400$ nm) was employed as the light source. All experimentally measured potentials were converted to the ones versus RHE by using the following equation: $E(RHE) = E(Ag/AgCl) + E^{\Theta}(Ag/AgCl) + 0.059pH V (E^{\Theta}(Ag/AgCl) = 0.197 V at 25 °C)$.


The LSVs of Si/TiO₂/Co(CR-DCP) and bare Si/TiO₂ were measured in 0.1 M acetate buffer at pH 4.5, or 0.1 M phosphate buffer at pH 7, or 0.1 M borate buffer at pH 9 under continuous or chopped illumination at a scan rate of 10 mV s⁻¹. The controlled potential photoelectrolysis (CPP) experiments of Si/TiO₂/Co(CR-DCP) and Si/TiO₂ electrodes were conducted at 0 V vs RHE in 0.1 M acetate buffer at pH 4.5 with 2 min dark chop every hour of illumination. The amount of evolved H_2 in the headspace of the sealed gas-tight cell was analyzed by a gas chromatograph (GC, Ceaulight GC-7920) equipped with a 5 Å molecular sieve column (2 mm \times 2 m) during CPP experiments. The faradaic efficiencies were determined from the CPP experiments at 0 V over 2 h of illumination. The IPCE values of Si/TiO₂/Co(CR-DCP) were measured on a Zahner photoelectrochemical workstation (CIMPS-2) under illumination from a LED lamp (TLS03) with a wavelength scan range from 365 to 1020 nm.

The electrochemical impedance spectra (EIS) were measured at zero bias in 0.1 M acetate buffer at pH 4.5 under illumination with the sweeping frequency from 100 kHz to 0.1 Hz and a 5 mV amplitude using a potentiostat (CHI650E). The intensity modulated photocurrent spectra (IMPS) were conducted on a Zahner photoelectrochemical workstation (CIMPS-2). Intensity-modulated light was provided by a white light-emitting diode with an intensity of 100 mW cm⁻².


The superimposition of sinusoidal modulation of light-emitting diode was 10% and the modulation amplitude voltage was 2 mV. IMPS data was collected over the 10 kHz to 0.1 Hz frequency range at different applied potentials.


Fig. S1 Top-view SEM image of the Si/TiO₂ electrode.

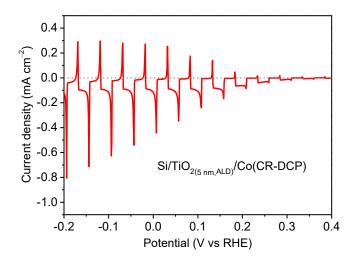

Fig. S2 X-ray photoelectron spectroscopy (XPS) survey of the as-prepared Si/TiO₂/Co(CR-DCP) electrode.

Fig. S3 LSVs of the Si/TiO₂/Co(CR-DCP) photocathodes prepared with varying soaking time and bare Si/TiO₂ in 0.1 M acetate buffer at pH 4.5 under (a) continuous and (b) chopped illumination, at a scan rate of 10 mV s^{-1} .

Fig. S4 (a) LSVs of Si/TiO₂/Co(CR-DCP) in different buffers (0.1 M) at pH 4.5, 7, and 9. LSVs of Si/TiO₂/Co(CR-DCP) and bare Si/TiO₂ (b) in phosphate buffer at pH 7 and (c) in borate buffer at pH 9 under chopped illumination at a scan rate of 10 mV s⁻¹.

Fig. S5 *J-V* curve of Si/TiO_{2(5 nm,ALD)}/Co(CR-DCP) under chopped illumination at 10 mV s $^{-1}$.

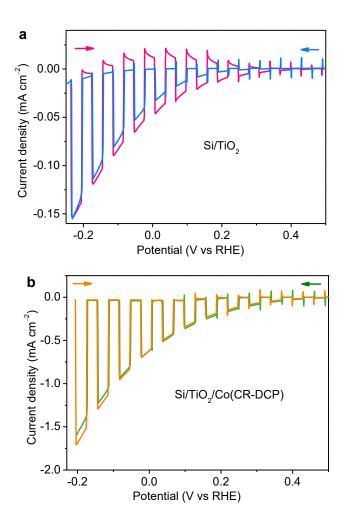
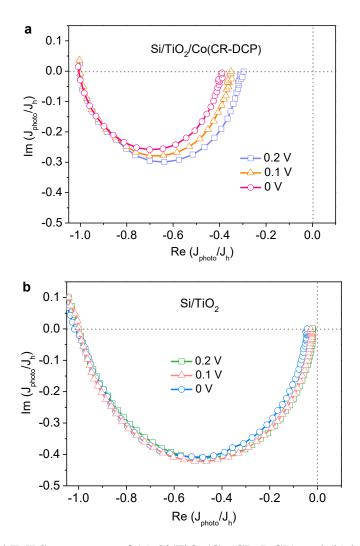
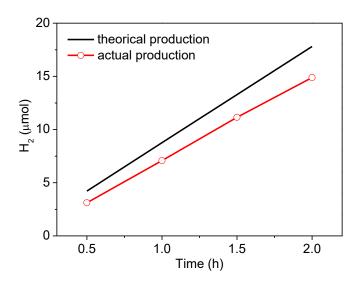




Fig. S6 J-V curves of (a) bare Si/TiO₂ and (b) Si/TiO₂/Co(CR-DCP) with a 5 μ m, porous TiO₂ film, scanning first in cathodic direction and then in anodic direction under chopped illumination at 10 mV s⁻¹.

Fig. S7 Normalized IMPS responses of (a) Si/TiO₂/Co(CR-DCP) and (b) bare Si/TiO₂ at applied potentials of 0.2, 0.1, and 0 V.

Fig. S8 Current efficiency of Si/TiO₂/Co(CR-DCP) for PEC H_2 production in 0.1 acetate buffer at pH 4.5 under 100 mW cm⁻² illumination over 2 h (a geometrical surface area of about 1 cm⁻² for the working electrode).

Table S1 Previously reported non-sensitized planar semiconductor/molecular catalyst photocathodes for PEC H₂ production in water^a

Photocathode	Anchor	Electrolyte (pH)	$J_{(0 \text{ V})}^{b}$ (mA cm ⁻²)	E_{on}^{c} (V)	Stability ^d (loss % of photocurrent)	Ref.
InGaP ₂ /TiO ₂ /cobaloxime/TiO ₂	Carboxylate	0.1 M NaOH (pH 13)	-9	0.7	5% @ 0 V after 20 min	S 3
Si/TiO ₂ /cobaloxime	Hydroxamate	0.1 M borate (pH 9)	-0.32	0.32	2.9% @ 0 V after 6 h	S4
GaP-PVP/cobaloxime	PVP polymer grafting ^e	1 M phosphate (pH 7)	-2.7	0.76	17% @ 0.17 V after 5 min	S5
GaP-PVP/cobaloxime	PVP polymer grafting	0.1 M phosphate (pH 7)	-1.3	0.61	27% @ 0 V after 60 min	S 6
GaP-PVP/cobaloxime	PVP polymer grafting	0.1 M phosphate (pH 7)	-0.92	0.72	~10% @ 0.17 V after 5 min	S7
GaP(100)-PVI/cobaloxime	PVI polymer grafting ^f	0.1 M phosphate (pH 7)	-1.2	0.58	n/a	S 8
GaP(111)-PVI/cobaloxime	PVI polymer grafting	0.1 M phosphate (pH 7)	-0.89	0.65	13% @ 0 V after 55 min	S 8
GaP/cobalt porphyrin	Carbon chain	0.1 M phosphate (pH 7)	-1.31	0.55	< 10% @ 0 V after 4 h	S 9
Au/InP/Fe ₂ S ₂ (CO) ₆ ^g	Direct S coordination	0.1 M NaBF ₄ (pH 7)	-4.5×10^4	0.51	n/a	S10
$Si/ALD\text{-}TiO_2/SC\text{-}TiO_2/CoC_{11}P/ALD\text{-}TiO_2$	Phosphonate	1 M phosphate (pH 7)	-1.25	0.47	24% @ 0 V after 1 h	S11
Si/ALD-TiO ₂ /SC-TiO ₂ /CoC ₁₁ P	Phosphonate	1 M phosphate (pH 7)	-0.5	0.09	rapid decrease @ 0 V in 2 h	S11
CuFe _x O _y /cobaloxime	DCP	0.2 M phosphate (pH 6.7)	_	0.86	rapid decrease @ 0.4 V in 8 min	S12
GaP-PVP/cobaloxime	PVP polymer grafting	0.1 M acetate (pH 4.5)	-1.10	0.5	18 @ -0.12 V after 15 min	S13
Si/mesoTiO ₂ /DuBois' Ni catalyst	Phosphonate	0.1 M acetate (pH 4.5)	-0.34	0.4	50 @ 0 V after 8 h	S2
Si/mesoTiO ₂ /cobaloxime	Phosphonate	0.1 M acetate (pH 4.5)	-0.33	~ 0.36	100 @ 0 V after 0.5 h	S2
Si/mesoTiO ₂ /Pt	_	0.1 M acetate (pH 4.5)	-0.43	~ 0.4	Steady @ 0 V over 24 h	S2
P3HT:PCBM/cobaloxime	By click reaction	0.1 M acetate (pH 4.5)	-0.002	n/a	n/a	S14
Si/TiO ₂ /Co(CR-DCP)	DCP	0.1 M acetate (pH 4.5)	-0.682	0.37	Steady @ 0 V over 10 h	This work

^aIllumination intensity: 100 mW cm⁻². ^bLSV measurements. ^cAll potentials are versus RHE. ^dChronoamperometry measurements. ^ePVP = polyvinylpyridine. ^fPVI = polyvinylimidazole. ^gUnder illumination of 395 nm LED.

Table S2 Kinetic data obtained from IMPS responses of photoelectrodes

Photocathode	Potential (V)	k_{trans} (s^{-1})	$k_{\rm rec}$ (s ⁻¹)	$k_{\text{trans}}/(k_{\text{trans}} + k_{\text{rec}})$ (%)
Si/TiO ₂ /Co(CR-DCP)	0	1293	2022	39
	0.1	1194	2121	36
	0.2	1160	2154	35
Si/TiO ₂	0	125	4644	2.6
	0.1	69	4859	1.7
	0.2	45	4918	0.9

Table S3 Quantitative data obtained from ICP-OES analysis for the amounts of the immobilized catalyst on the surface of Si/TiO₂ electrodes and the Co^{n+} species in the electrolytes before and after 10 h CPP experiments

	<u>L</u>	
	Amount of immobilized	Amount of Co ⁿ⁺ species in
Photocathode	catalyst on electrode surface	electrolyte
	(nmol cm ⁻²)	$(nmol mL^{-1})$
Si/TiO ₂ /Co(CR-DCP) before used	37.8 ± 5.8	0.12 ± 0.02
Si/TiO ₂ /Co(CR-DCP) after used	27.4 ± 6.4	0.26 ± 0.01

References

- S1 C. Nie, W. Ni, L. Gong, J. Jiang, J. Wang and M. Wang, *J.Mater. Chem. A*, 2019, **7**, 27432–27440.
- S2 J. J. Leung, J. Warnan, D. H. Nam, J. Z. Zhang, J. Willkomm and E. Reisner, *Chem. Sci.*,2017, 8, 5172–5180.
- J. Gu, Y. Yan, J. L. Young, K. X. Steirer, N. R. Neale and J. A. Turner, *Nat. Mater.*, 2016,15, 456–460.
- S4 L. Gong, H. Yin, C. Nie, X. Sun, X. Wang and M. Wang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 34010–34019.
- S5 A. Krawicz, J. Yang, E. Anzenberg, J. Yano, I. D. Sharp and G. F. Moore, *J. Am. Chem. Soc.*, 2013, **135**, 11861–11868.
- S6 A. M. Beiler, D. Khusnutdinova, S. I. Jacob and G. F. Moore, *Ind. Eng. Chem. Res.*, 2016, **55**, 5306–5314.
- S7 A. Krawicz, D. Cedeno and G. F. Moore, *Phys. Chem. Chem. Phys.*, 2014, **16**, 15818–15824.
- S8 A. M. Beiler, D. Khusnutdinova, S. I. Jacob and G. F. Moore, *ACS Appl. Mater. Interfaces*, 2016, **8**, 10038–10047.
- S9 D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob and G. F. Moore, *Chem. Sci.*, 2017, **8**, 253–259.
- S10 T. Nann, S. K. Ibrahim, P. M. Woi, S. Xu, J. Ziegler and C. J. Pickett, *Angew. Chem.*, *Int. Ed.*, 2010, 49, 1574–1577.
- S. Chandrasekaran, N. Kaeffer, L. Cagnon, D. Aldakov, J. Fize, G. Nonglaton, F. Baleras,
 P. Mailley and V. Artero, *Chem. Sci.*, 2019, 10, 4469–4475.
- S12 C. Tapia, E. Bellet-Amalric, D. Aldakov, F. Boudoire, K. Sivula, L. Cagnon and V. Artero, *Green Chem.*, 2020, **22**, 3141–3149.
- S13 D. Cedeno, A. Krawicz, P. Doak, M. Yu, J. B. Neaton and G. F. Moore, *J. Phys. Chem. Lett.*, 2014, **5**, 3222–3226.
- S14 Y. Chen, H. Chen and H. Tian, *Chem. Commun.*, 2015, **51**, 11508–11511.