Electronic Supplementary Information Boosting the electrochemical performance of hematite nanorods via quenching-induced metal single atom functionalization

Ming Su, ¹ Zhenghui Pan, ^{2*} Yanan Chong, ¹ Changchun Ye, ¹ Xiaojing Jin, ¹ Qingyuan Wu, ³ Zhao Hu, ¹ Daiqi Ye, ¹ Geoffrey I. N. Waterhouse, ⁴ Yongcai Qiu, ^{1,5*} Shihe Yang⁶

¹Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China

²Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China

³College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China

⁴School of Chemical Sciences, the University of Auckland, Auckland 1142, New Zealand

⁵State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China

⁶School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China

E-mail: msepz@nus.edu.sg; ycqiu@scut.edu.cn

Figure S1. (a) The diameter of six CNT fibers. (b) The digital image of pristine CNT fiber, α -Fe₂O₃@CNT fiber, and Sn-Fe₂O₃@CNT fiber.

Figure S2. SEM images of (a, b) α -Fe₂O₃@CNT fiber, (c, d) DIW-Fe₂O₃@CNT fiber, and (e,

f) Sn-Fe₂O₃@CNT fiber.

Figure S3. HAADF-STEM image of isolated Sn single atoms redistributed across the nanorod support.

Figure S4. XRD pattern of the FeOOH@CNT fiber precursor.

The position and relative intensities of diffraction peaks in the XRD pattern closely match the JCPDS card for FeOOH (# 75-1594).¹

Figure S5. O₂-TPD profiles of α -Fe₂O₃@CNT fiber and Sn-Fe₂O₃@CNT fiber.

The nature of the surficial oxygen related to the conductivity of the electrode material and the form of surface adsorbed oxygen species may change via the following transformation reactions: O_2 (ad) $\rightarrow O^{2-}$ (ad) $\rightarrow O^{-}$ (ad) $\rightarrow O^{2-}$ (ad/lattice). The first peak (~250 °C) represents the desorption of physically adsorbed oxygen. The second peak (~500 °C) is related to the desorption of the chemically adsorbed species O^{2-} (ad/or O^{-}) formed by the adsorbed oxygen on the oxygen vacancies. The third peak (< 600 °C) signifies the desorption of lattice oxygen. It can be seen from the Figure S5 that the area of the second peak increases after quenching in the solution of SnCl₄, which means an increase in oxygen vacancies.

Figure S6. Sn 3d core-level XPS spectrum for the Sn-Fe₂O₃ @CNT fiber.

From Figure S6, it can be clearly seen that the Sn 3d peak in the XPS survey spectrum (binding energy is located at 487.19 and 495.63 eV correspond to the characteristic Sn $3d_{3/2}$ and Sn $3d_{5/2}$ peaks of Sn⁴⁺), evidencing the existence of Sn.²

Figure S7. CV curves for Sn-Fe₂O₃@CC, Ti-Fe₂O₃@CC, DIW-Fe₂O₃@CC, α -Fe₂O₃@CC, Cr-Fe₂O₃@CC, Mn-Fe₂O₃@CC, Ni-Fe₂O₃@CC, and Cu-Fe₂O₃@CC electrodes collected in 5 M LiCl at a scan rate of 100 mV s⁻¹.

Because the low mass loading of the CNT fiber, it is difficult to reflect the changes of capacitance by doping other ions (the effect is not obvious). Therefore, carbon cloth is used to test the sample doping other ions. Carbon cloth (CC) and CNT fiber only serve as the current collects, and will not affect the performance of working electrodes.

In this work, α -Fe₂O₃@CC electrodes were quenched in aqueous solutions of SnCl₄, TiCl₄, deionized water (DIW), CrCl₃, MnCl₂, CuCl₂, and NiCl₂, to produce the samples denoted as Sn-Fe₂O₃@CC, Ti-Fe₂O₃@CC, DIW-Fe₂O₃@CC, α -Fe₂O₃@CC, Cr-Fe₂O₃@CC, Mn-Fe₂O₃@CC, Ni-Fe₂O₃@CC, and Cu-Fe₂O₃@CC respectively. Figure S7 shows that quenching α -Fe₂O₃@CC in DIW caused no change in the capacitance, whereas quenching in the solutions of different metal salts dramatically altered the capacitance. The data conclusively demonstrates that quenching α -Fe₂O₃ in the presence of aqueous metal salts introduces metal single atoms, thus changing the conductivity (Figure S8) and capacitance of the material. Interestingly, the capacitance of α -Fe₂O₃@CC loaded with divalent MAS decreased when compared to the pristine α -Fe₂O₃@CC, while decorated with high valence (M³⁺ or M⁴⁺) ions increase the conductivity and capacitance. We tentatively propose that the charge distribution on the surface of α -Fe₂O₃ changes after M²⁺ decoration, such that the electron donating ability of the material becomes weak. Conversely, for M⁴⁺ decoration, the capacitance increased greatly, suggesting an enhancement in electron transfer performance.

Figure S8. Mott-schottky curves for Sn-Fe₂O₃@CC, Ti-Fe₂O₃@CC, and DIW-Fe₂O₃@CC, α -Fe₂O₃@CC, Cr-Fe₂O₃@CC, Mn-Fe₂O₃@CC, Ni-Fe₂O₃@CC, and Cu-Fe₂O₃@CC electrodes in 1M NaOH at a frequency of 1 kHz.

Figure S9. (a) Powder XRD patterns and (b) CV curves for 1.86, 6.78, 12.3% Sn-Fe₂O₃-H

The powder XRD pattern of the 1.86, 6.78, 12.3% Sn-Fe₂O₃-H@CNT fiber (Sn-Fe₂O₃@CNT fiber prepared by hydrothermal method) sample matched the JCPDS card for hematite (# 33-0664) implying that the hydrothermal not alter the structure of the supported α -Fe₂O₃.³ CV curves for hydrothermal and quenching sample collected at a sweep rate of 100 mV s⁻¹ are shown in Figure S9b. The current density of the 2.08% Sn-Fe₂O₃-Q electrode is significantly higher than that of 1.86, 6.78, 12.3% Sn-Fe₂O₃-H electrodes.

Figure S10. (a) CV curves and (b) Nyquist plots of Sn-Fe₂O₃@CNT fiber electrodes in different amount of Sn single atoms.

To investigate the influence of mass loading of Sn single atom on the electrochemical properties of the Sn-Fe₂O₃@CNT fiber electrodes, we changed the concentration of the quenching solution (0.001 M, 0.005 M, 0.05 M and 0.5 M, respectively) and obtained samples with different amount of doping (1.01%, 1.21%, 1.65% and 2.08%, respectively, which are examined from ICP-OES). CV curves for different concentrations of samples collected at a sweep rate of 100 mV s⁻¹ are shown in Figure S10a. The current density of the 2.08% Sn-Fe₂O₃ electrode is significantly higher than that of 1.01%, 1.21% and 1.65% Sn-Fe₂O₃ electrodes and the corresponding capacitances are 120.9, 143.7, 158.4 and 199.1 mF cm⁻², respectively. Such improved capacitance for 2.9% Sn-Fe₂O₃ electrode can be attributed that the high loading of Sn⁴⁺ single atom enhances electron and ion transfer between the fiber electrode and the electrolyte interface. Furthermore, the Nyquist plot shows the same result.

Figure S11. CV curves for the Sn-Fe₂O₃@CNT fiber electrode collected at various scan rates in 5 M LiCl.

Figure S12. IR drop curves for the α -Fe₂O₃@CNT, DIW-Fe₂O₃@CNT and Sn-Fe₂O₃@CNT fiber electrodes collected at different current densities in 5M LiCl.

Figure S13. (a, b) SEM images of the MnO₂@CNT fiber electrode at different magnifications. (c) CV curves for the MnO₂@CNT fiber electrode collected at various scan rates. (d) GCD curves for the MnO₂@CNT fiber electrode collected at different current densities. (e) Specific areal capacitances at different current densities. (f) Capacitance retention at different current densities.

The SEM images of Figure S13a and b shows that the electrodeposited MnO_2 is very uniformly coated on the CNT fiber, forming a porous network structure with a large specific surface area. The CV and GCD curves in Figure S13c and d, respectively, are collected in the same standard three-electrode system in 5M LiCl aqueous electrolyte. The $MnO_2@CNT$ fiber electrode exhibits excellent energy storage performance, evidenced by the CV curves which maintain a parallelogram shape as the scanning speed increased from 10 mV s⁻¹ to 300 mV s⁻¹. This behavior is consistent with superior rate capacity performance. The GCD curves (Figure S13d) maintain an equilateral triangle shape with increasing current density, suggesting a comparable columbic efficiency and good reaction reversibility. The calculated areal capacitance of the $MnO_2@CNT$ fiber electrode at different current densities is shown in Figure S13e. When the current density is 0.24 mA cm⁻², a maximum capacitance of 306.3 mF cm⁻² is realized. Since this capacitance is a good match the Sn-Fe₂O₃@CNT fiber negative electrode (Figure S14), the FSC constructed using the two different fiber electrodes will have good symmetry. Further, the $MnO_2@CNT$ fiber electrode demonstrates excellent capacitance retention. When the current density reaches 1.68 mA cm⁻², a capacity of 84.45% is maintained (Figure S13f).

Figure S14. CV curves collected for $MnO_2@CNT$ and $Sn-Fe_2O_3@CNT$ fiber electrodes in 5M LiCl at a scan rate of 100 mV s⁻¹.

Figure S15. CV curves for all-solid-state Sn-Fe₂O₃@CNT//MnO₂@CNT FSC collected at various scan rates over a voltage window of 1.6 V.

Figure S16. Nyquist plot for all-solid-state Sn-Fe₂O₃@CNT//MnO₂@CNT FSC.

Comple	Sn	Sn
Sample	(mg/Kg)	(wt. %)
2.08%-Sn-Fe ₂ O ₃ -Q	20769	2.08
1.86%-Sn-Fe ₂ O ₃ -H	18622	1.86
6.78%-Sn-Fe ₂ O ₃ -H	67766	6.78
12.3%-Sn-Fe ₂ O ₃ -H	122499	12.25
1.65%-Sn-Fe ₂ O ₃ -Q	16555	1.65
1.21%-Sn-Fe ₂ O ₃ -Q	12080	1.21
1.01%-Sn-Fe ₂ O ₃ -Q	10117	1.01

Table S1. The content of Sn in Sn-Fe₂O₃@CNT fiber according to the ICP-OES measurement.

Table S2. The oxygen vacancies content of α -Fe₂O₃, DIW-Fe₂O₃ and Sn-Fe₂O₃ nanorods according to XPS measurement.

Comple	Fe ²⁺	oxygen vacancies	
Sample	(709.8-710.5eV)	(531.2-531.8 eV)	
a-Fe ₂ O ₃	0.48	0.36	
DIW-Fe ₂ O ₃	0.60	0.41	
Sn-Fe ₂ O ₃	0.45	0.46	

Sample	Path	CN	R (Å)	σ(Ų)	$\Delta \mathbf{E}_0 \ (\mathbf{eV})$
Sn	Sn-Sn	6	3.07±0.021	0.009±0.001	4.94±0.64
Sn-Fe ₂ O ₃	Sn-O	5.13±0.11	1.99±0.011	0.006±0.003	1.98 ± 0.05
	Sn-Fe	1.05±0.09	3.24±0.007		
SmQ	Sn-O	6.35±0.55	2.05±0.008	0.002±0.001	5 24+1.01
51102	Sn-Sn	3.42±1.32	3.71±0.007	0.000±0.002	5.24±1.01

Table S3. EXAFS fitting parameters results for $Sn-Fe_2O_3$.

 Table S4. Summarized electrochemical characterization data for different samples.

	Flat-band potential	Donor density	
Sample	(eV) ^{a)}	(cm ⁻³) ^{a)}	
α-Fe ₂ O ₃ @CNT	-0.71	1.62×10 ¹⁹	
DIW-Fe ₂ O ₃ @CNT	-0.72	1.91×10 ¹⁹	
Sn-Fe ₂ O ₃ @CNT	-0.75	3.5×10 ¹⁹	

^{a)}The flat-band potential and donor density are calculated from the Mott-Schottky curve (Figure 4e).

References

- 1. Y. Song, S. Qin, Y. Zhang, W. Gao and J. Liu, J. Phys. Chem. C, 2010, 114, 21158-21164.
- 2. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang and Y. Li, *Nano letters*, 2011, **11**, 2119-2125.
- 3. P. Kumar, P. Sharma, R. Shrivastav, S. Dass and V. R. Satsangi, Int. J. Hydrogen Energy, 2011, 36, 2777-2784.