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Synthesis of porous-NPC: 

PANi aerogel was prepared in the presence of phytic acid by oxidative polymerization 

according to a published procedure. Typically, 5 mL phytic acid (70%, Aladdin) was 

added into 15 mL deionized water, followed by the addition of 0.6 g of SiO2 nano-

particles (100 nm) into this solution. After stirring at the room temperature for 20 

minute, 5 mL of aniline (99%, Aladdin) was added into this solution. 0.9 g ammonium 

persulphate (APS, 99%, Aladdin) was dissolved in 10 mL deionized water under 

stirring at room temperature. The above two solutions were mixed together and kept 

stewing for 12 h at 4 °C. The resultant hydrogel was washed by plenty of deionized 

water for two days then freeze-dried for 24 h to produce PANi aerogel for pyrolysis. 

To prepare porous-NPC foam, the PANi aerogel was annealed at 950 °C for 2 h under 

Ar atmosphere. The obtained powder was added into moderate HF solution (30% wt, 

Aladdin) under stirring for 24 h to remove the SiO2 template. The reaction product was 

collected by centrifugation, thoroughly washed by deionized water for several times, 

then freeze-dried for 24 h to obtain the final product. For comparison, SiO2 nano-

particles was removed from the phytic acid solution and without HF washing, the N, P 

co-doped carbon (NPC) foam was then prepared by annealing the obtained PANi 

aerogel at 950 °C for 2 h under Ar atmosphere.

Battery assembly and electrochemical measurements: 

A slurry of the active material, Super P, and polyvinylidene fluoride (PVDF) are mixed 

at the weight ratio of 7:2:1. N-Methyl-2-pyrrolidone (NMP, 99.5%, Aladdin) was 
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introduction to adjust the viscosity of the slurry. The electrodes were then coated on a 

copper current collector with a spreader of 120 μm, and transferred to a vacuum oven 

at 70 °C for 12 h. LIBs used lithium as reference electrodes and 1 M LiPF6 in a mixture 

of ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 by volume) as the electrolyte, 

and Celgard13501 (Celgard) as the separator. SIBs were also fabricated at the same 

conditions assembling with sodium as the reference electrodes, 1 M NaPF6 in a mixture 

of ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 by volume) as the electrolyte, 

and glass microfiber (Whatman) as the separator. The electrochemical performance was 

measured on the Neware Battery Measurement System with a potential window of 0.01-

3 V, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

were conducted on the CHI660E electrochemical workstation.

Materials characterization: 

The morphology of the sample was characterized by scanning electron microscopy 

(SEM) on a HITACHI S-4800 and transmission electron microscopy (TEM) on a FEI 

Tacnai G2 with the accelerating voltage of 200 kV. The crystalline structure of the 

sample was performed on X-ray diffraction (XRD) with Cu radiation of Dmax 2500 V. 

X-ray photoelectron spectroscopy (XPS) scans were performed on an ESCALAB 250 

photoelectron spectrometer. Raman spectra was collected on Lab RAM HR800. The 

Brunner-Emmet-Teller (BET) surface area of the sample was measured on 

Micrometritics ASAP 2020 analyzer. The thermogravimetric curve (TG) of the sample 

was performed by STA449F3.
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Figure S1. Low-magnification SEM image for porous-NPC.
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Figure S2. High-magnification TEM image for NPC
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Figure S3. Raman spectra of the SiO2-porous-NPC.
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Figure S4. XPS survey spectrum of the SiO2-porous-NPC.
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Figure S5. XPS high-resolution spectra of (a) C 1s, (b) N 1s, (c) P 2p, and (d) Si 2p of 
SiO2-porous-NPC.
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Figure S6. XPS high-resolution spectra of (a) C 1s, (b) N 1s, and (c) P 2p of NPC.
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Figure S7. TG curves of the SiO2-porous-NPC and NPC precursor.
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Figure S8. Electrochemical performance of the porous-NPC electrode for LIBs: (a) 
Charge-discharge voltage profiles at 1 A g-1, and (b) Charge-discharge voltage profiles 
at various current densities.
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Figure S9. The comparison of electrochemical performances for the porous-NPC 
electrode with other reported results for LIBs.
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Figure S10. Long-term cycling performance of the porous-NPC electrode at a current 
of 0.2 A g-1 for LIBs.
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Figure S11. Nyquist plots of the porous-NPC electrode (a) before and after the cycle 
for LIBs, (b) after circulating different cycles for LIBs.
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Figure S12. Electrochemical performance of the porous-NPC electrode for SIBs: (a) 
Charge-discharge voltage profiles at 1 A g-1, and (b) Charge-discharge voltage profiles 
at various current densities.
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Figure S13. The comparison of electrochemical performances for the porous-NPC 
electrode with other reported results for SIBs.
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Figure S14. Long-term cycling performance of the porous-NPC electrode at a current 
of 0.2 A g-1 for SIBs.
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Figure S15. Nyquist plots of the porous-NPC electrode before and after the cycle for 
SIBs. 


