Supporting Information

Harnessing synchronous photothermal and photocatalytic effect of cryptomelane-type MnO₂ nanowire towards clean water production

Bolei Chen,^{*a,b†*} Xing Zhang,^{*a,c†*} Yu Xia,^{*d†*} Guangliang Liu,^{*c*} Hongqian Sang,^{*a*} Yumin Liu,^{*a*} Jikang Yuan,^{*e*} Jingfu Liu,^{*b*} Chunyan Ma,^{*b*} Yong Liang,^{*a,c*} Maoyong Song,^{*b,c**} Guibin Jiang^{*b*}

Figure S1. The X-Ray diffraction spectrum of the as-prepared crypomelane-type MnO₂ nanowire.

Figure S2. The cross – sectional SEM image of the MnO₂ light absorber. The scale bar is 1 mm.

Figure S3. Calculation of optical bandgap from UV-Vis-NIR absorption spectrum of MnO₂ light absorber.

Figure S4. The IR images of the MnO_2 light absorber in solar generator under UV, Vis and IR irradiations. (The UV, Vis, and IR irradiations were filtered from solar simulator with intensity of 3 kW m⁻²)

Figure S5. The evaporation rates of the device under UV, Vis, and IR light, respectively. The UV, Vis, and IR irradiations were filtered from solar simulator with intensity of 3 kW m⁻².

Figure S6. The thermodynamic As(III) oxidation reaction observed in MnO_2 suspension at 50 °C in dark.

Figure S7. The design and digital image of MnO_2 based solar steam generator.

Figure S8. The IR images of the MnO_2 light absorber in solar generator under solar irradiation with different intensities.